server.R 31.5 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
dmattek's avatar
dmattek committed
10 11
library(shinyBS) # for tooltips
library(shinycssloaders) # for loader animations
dmattek's avatar
dmattek committed
12 13
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
15 16 17
library(plotly) # interactive plot
library(DT) # interactive tables

dmattek's avatar
dmattek committed
18
library(dendextend) # for color_branches
19
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
20 21
library(RColorBrewer)
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
22
library(ggthemes) # nice colour palettes
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23 24

library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
Added:  
dmattek committed
25
library(dtw) # for dynamic time warping
dmattek's avatar
dmattek committed
26
library(factoextra) # extract and visualize the output of multivariate data analyses 
dmattek's avatar
Added:  
dmattek committed
27
library(imputeTS) # for interpolating NAs
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
28 29
library(robust) # for robust linear regression
library(MASS)
dmattek's avatar
dmattek committed
30 31
library(pracma) # for trapz used in AUC calculation

Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
32

dmattek's avatar
dmattek committed
33

34
# Global parameters ----
dmattek's avatar
dmattek committed
35
# change to increase the limit of the upload file size
dmattek's avatar
Added:  
dmattek committed
36
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
37

dmattek's avatar
dmattek committed
38 39 40 41 42
# Important when joining, grouping or ordering numeric (i.e. double, POSIXct) columns.
# https://stackoverflow.com/questions/58230619/xy-join-of-keyed-data-table-fails-when-key-on-numeric-column-and-data-fread-fr
setNumericRounding(2)


dmattek's avatar
dmattek committed
43 44 45
# colour of loader spinner (shinycssloaders)
options(spinner.color="#00A8AA")

dmattek's avatar
dmattek committed
46
# Server logic ----
dmattek's avatar
dmattek committed
47
shinyServer(function(input, output, session) {
48
  useShinyjs()
dmattek's avatar
dmattek committed
49
  
50
  # This is only set at session start
dmattek's avatar
dmattek committed
51
  # We use this as a way to determine which input was
52 53
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
54 55 56
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
57 58
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
59
  )
dmattek's avatar
dmattek committed
60 61 62 63 64 65 66 67 68

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
69
  
dmattek's avatar
dmattek committed
70
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
71
  
dmattek's avatar
dmattek committed
72
  # Generate random dataset
73
  dataGen1 <- eventReactive(input$inDataGen1, {
74
    if (DEB)
75
      cat("server:dataGen1\n")
76
    
dmattek's avatar
dmattek committed
77
    return(LOCgenTraj2(n_perGroup = 20, sd_noise = 0.01, sampleFreq = 0.4, endTime = 40))
78 79
  })
  
dmattek's avatar
dmattek committed
80
  # Load main data file
81
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
82
    if (DEB)
83
      cat("server:dataLoadNuc\n")
84

85 86 87 88 89 90 91
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
92
      return(fread(locFilePath, strip.white = T))
93 94 95
    }
  })
  
dmattek's avatar
dmattek committed
96 97 98 99
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
100

dmattek's avatar
dmattek committed
101
  # Load data with trajectories to remove
102
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
103
    if (DEB)
104
      cat(file = stdout(), "server:dataLoadTrajRem\n")
105
    
106 107 108 109 110 111 112 113 114 115
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
116
  
dmattek's avatar
dmattek committed
117
  # Load data with stimulation pattern
118
  dataLoadStim <- eventReactive(input$inButLoadStim, {
119
    if (DEB)
120
      cat(file = stdout(), "server:dataLoadStim\n")
121
    
122 123 124 125 126 127 128 129 130 131 132 133
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:  
dmattek committed
134 135
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
136
    if (DEB)
137
      cat(file = stdout(), 'server:uiFileLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
138 139 140 141
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
dmattek's avatar
dmattek committed
142
        "Select file and click Load Data",
dmattek's avatar
dmattek committed
143 144 145 146
        accept = c("text/csv", 
                   "text/comma-separated-values,text/plain", 
                   "application/gzip", 
                   "application/bz2"), 
dmattek's avatar
Added:  
dmattek committed
147 148 149 150
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
151
    if (DEB)
152
      cat(file = stdout(), 'server:uiButLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
153 154 155 156 157
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

158 159
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
160
    if (DEB)
161
      cat(file = stdout(), 'server:uiFileLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
162
    
163 164 165
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
dmattek's avatar
dmattek committed
166
        "Select file and click Load Data",
dmattek's avatar
dmattek committed
167 168 169 170
        accept = c("text/csv", 
                   "text/comma-separated-values,text/plain", 
                   "application/gzip", 
                   "application/bz2"), 
171 172 173 174
      )
  })
  
  output$uiButLoadStim = renderUI({
175
    if (DEB)
176
      cat(file = stdout(), 'server:uiButLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
177
    
178 179
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:  
dmattek committed
180 181
  })
  
182

dmattek's avatar
dmattek committed
183
  
dmattek's avatar
dmattek committed
184
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
185
  output$varSelTrackLabel = renderUI({
186
    if (DEB)
187
      cat(file = stdout(), 'server:varSelTrackLabel\n')
188
    
dmattek's avatar
dmattek committed
189
    locCols = getDataNucCols()
190
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
191 192 193
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
194
      'Track ID column',
dmattek's avatar
dmattek committed
195 196 197 198 199 200 201
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
202
    if (DEB)
203
      cat(file = stdout(), 'server:varSelTime\n')
204
    
dmattek's avatar
dmattek committed
205
    locCols = getDataNucCols()
206
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
207 208 209
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
210
      'Time column',
dmattek's avatar
dmattek committed
211 212 213 214 215
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
216 217

  output$varSelTimeFreq = renderUI({
218
    if (DEB)
219
      cat(file = stdout(), 'server:varSelTimeFreq\n')
220
    
221 222 223
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
dmattek's avatar
dmattek committed
224
        'Interval between 2 time points',
225 226 227 228 229 230
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
231
  })
dmattek's avatar
dmattek committed
232
  
dmattek's avatar
dmattek committed
233
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
234
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
235 236
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
237
  output$varSelGroup = renderUI({
238
    if (DEB)
239
      cat(file = stdout(), 'server:varSelGroup\n')
dmattek's avatar
dmattek committed
240
    
dmattek's avatar
dmattek committed
241 242 243 244 245
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
246
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
247 248

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
249 250
        selectInput(
          'inSelGroup',
dmattek's avatar
dmattek committed
251
          'Grouping columns',
dmattek's avatar
dmattek committed
252 253 254 255 256
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
257 258 259 260
      }
    }
  })
  
261 262
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
263
  output$varSelSite = renderUI({
264
    if (DEB)
265
      cat(file = stdout(), 'server:varSelSite\n')
dmattek's avatar
dmattek committed
266
    
267
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
268
      locCols = getDataNucCols()
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
269
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov|(G|g)roup', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
270 271 272
      
      selectInput(
        'inSelSite',
dmattek's avatar
dmattek committed
273
        'Prepend track ID with',
dmattek's avatar
Added:  
dmattek committed
274 275
        locCols,
        width = '100%',
276 277
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:  
dmattek committed
278 279
      )
    }
dmattek's avatar
dmattek committed
280 281 282 283
  })
  
  
  output$varSelMeas1 = renderUI({
284
    if (DEB)
285
      cat(file = stdout(), 'server:varSelMeas1\n')
dmattek's avatar
dmattek committed
286 287 288
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
289
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
290

dmattek's avatar
dmattek committed
291 292
      selectInput(
        'inSelMeas1',
dmattek's avatar
dmattek committed
293
        '1st measurement column',
dmattek's avatar
dmattek committed
294 295 296 297 298 299 300 301 302
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
303
    if (DEB)
304
      cat(file = stdout(), 'server:varSelMeas2\n')
305
    
dmattek's avatar
dmattek committed
306 307 308 309
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
310
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
311

dmattek's avatar
dmattek committed
312 313
      selectInput(
        'inSelMeas2',
dmattek's avatar
dmattek committed
314
        '2nd measurement column',
dmattek's avatar
dmattek committed
315 316 317 318 319 320 321
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
322
  # UI-side-panel-trim x-axis (time) ----
323
  
dmattek's avatar
dmattek committed
324
  output$uiSlTimeTrim = renderUI({
325
    if (DEB)
326
      cat(file = stdout(), 'server:uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
327 328 329 330 331 332 333 334 335 336 337 338
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
dmattek's avatar
dmattek committed
339
        label = 'Use time range',
dmattek's avatar
dmattek committed
340 341 342 343 344 345 346
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
347 348 349 350 351 352 353
  }) 
  
  # Return the value of slider for trimming time; 
  # output delayed by MILLIS
  returnValSlTimeTrim = reactive({
    return(input$slTimeTrim)
  }) %>% debounce(MILLIS)
dmattek's avatar
dmattek committed
354
  
dmattek's avatar
dmattek committed
355
  # UI-side-panel-normalization ----
356 357 358 359
  
  # select normalisation method
  # - fold-change calculates fold change with respect to the mean
  # - z-score calculates z-score of the selected regione of the time series
dmattek's avatar
dmattek committed
360
  output$uiChBnorm = renderUI({
361
    if (DEB)
362
      cat(file = stdout(), 'server:uiChBnorm\n')
dmattek's avatar
dmattek committed
363 364
    
    if (input$chBnorm) {
365
      tagList(
dmattek's avatar
dmattek committed
366 367 368
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
369 370 371
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score'),
        width = "40%"
      ),
dmattek's avatar
dmattek committed
372
      bsTooltip('rBnormMeth', helpText.server[["rBnormMeth"]], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
373 374 375 376
      )
    }
  })
  
377
  # select the region of the time series for normalisation
dmattek's avatar
dmattek committed
378
  output$uiSlNorm = renderUI({
379
    if (DEB)
380
      cat(file = stdout(), 'server:uiSlNorm\n')
dmattek's avatar
dmattek committed
381 382 383 384 385 386 387 388 389 390
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
391
      tagList(
dmattek's avatar
dmattek committed
392 393
      sliderInput(
        'slNormRtMinMax',
394
        label = 'Time span',
dmattek's avatar
dmattek committed
395 396
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
397 398
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
399
      ),
dmattek's avatar
dmattek committed
400
      bsTooltip('slNormRtMinMax', helpText.server[["slNormRtMinMax"]], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
401 402 403 404
      )
    }
  })
  
405 406 407 408 409 410 411
  # Return the value of slider for normalisation time; 
  # output delayed by MILLIS
  returnValSlNormRtMinMax = reactive({
    return(input$slNormRtMinMax)
  }) %>% debounce(MILLIS)
  
  
412
  # use robust stats (median instead of mean, mad instead of sd)
dmattek's avatar
dmattek committed
413
  output$uiChBnormRobust = renderUI({
414
    if (DEB)
415
      cat(file = stdout(), 'server:uiChBnormRobust\n')
dmattek's avatar
dmattek committed
416 417
    
    if (input$chBnorm) {
418
      tagList(
dmattek's avatar
dmattek committed
419 420
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
421 422
                    FALSE, 
                    width = "40%"),
dmattek's avatar
dmattek committed
423
      bsTooltip('chBnormRobust', helpText.server[["chBnormRobust"]], placement = "top", trigger = "hover", options = NULL)
424
      )
dmattek's avatar
dmattek committed
425 426 427
    }
  })
  
428
  # choose whether normalisation should be calculated for the entire dataset, group, or trajectory
dmattek's avatar
dmattek committed
429
  output$uiChBnormGroup = renderUI({
430
    if (DEB)
431
      cat(file = stdout(), 'server:uiChBnormGroup\n')
dmattek's avatar
dmattek committed
432 433
    
    if (input$chBnorm) {
434
      tagList(
dmattek's avatar
dmattek committed
435
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
436
                   label = 'Normalisation grouping',
437 438
                   choices = list('Entire dataset' = 'none', 'Per group' = 'group', 'Per trajectory' = 'id'), 
                   width = "40%"),
dmattek's avatar
dmattek committed
439
      bsTooltip('chBnormGroup', helpText.server[["chBnormGroup"]], placement = "top", trigger = "hover", options = NULL)
440
      )
dmattek's avatar
dmattek committed
441 442 443 444
    }
  })
  
  
445 446 447 448 449
  # Pop-overs ----
  addPopover(session, 
             "alDataFormat",
             title = "Data format",
             content = helpText.server[["alDataFormat"]],
dmattek's avatar
dmattek committed
450
             trigger = "click")
dmattek's avatar
dmattek committed
451
  
dmattek's avatar
dmattek committed
452

dmattek's avatar
dmattek committed
453
  # Processing-data ----
dmattek's avatar
dmattek committed
454
  
455
  # Obtain data either from an upload or by generating a synthetic dataset
456 457 458 459 460 461 462 463 464 465 466 467
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
468
    # Don't wrap around if(DEB) !!!
469
    cat(
470
      "server:dataInBoth\n   inGen1: ",
471
      locInGen1,
472
      "      prev=",
473
      isolate(counter$dataGen1),
474
      "\n   inDataNuc: ",
475 476 477 478 479 480 481 482 483 484
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
485
    # isolate the checks of the counter reactiveValues
486 487
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
488
      cat("server:dataInBoth if inDataGen1\n")
489 490 491 492
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
493
      cat("server:dataInBoth if inDataLoadNuc\n")
494
      dm = dataLoadNuc()
495 496 497
      
      # convert to long format if radio box set to "wide"
      # the input data in long format should contain:
498
      # - the first row with a header: group, track id, time points as columns with numeric header
499 500
      # - consecutive rows with time series, where columns are time points
      if (input$inRbutLongWide == 1) {
501 502 503 504 505 506 507 508 509 510 511 512
        print(length(names(dm)))
        
        # data in wide format requires at least 3 columns: grouping, track id, 1 time point
        if (length(names(dm)) < 3) {
          dm = NULL
          
          createAlert(session, "alertAnchorSidePanelDataFormat", "alertWideTooFewColumns", 
                      title = "Error",
                      content = helpText.server[["alertWideTooFewColumns"]], 
                      append = FALSE,
                      style = "danger")
          
513

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        } else {
          closeAlert(session, "alertWideTooFewColumns")

          # obtain column headers from the wide format data
          # headers for grouping and track id columns
          loc.cols.idvars = names(dm)[1:2]
          
          # headers for time columns
          loc.cols.time = names(dm)[c(-1, -2)]
          
          # check if time columns are numeric
          # from https://stackoverflow.com/a/21154566/1898713
          loc.cols.time.numres = grepl("[-]?[0-9]+[.]?[0-9]*|[-]?[0-9]+[L]?|[-]?[0-9]+[.]?[0-9]*[eE][0-9]+", loc.cols.time)
          
          # melt the table only if time columns are numeric
          if (sum(!loc.cols.time.numres) == 0) {
            closeAlert(session, "alertWideMissesNumericTime")
            
            # long to wide
            dm = melt(dm, id.vars = loc.cols.idvars, variable.name = COLRT, value.name = COLY)
            
            # convert column names with time points to a number
            dm[, (COLRT) := as.numeric(levels(get(COLRT)))[get(COLRT)]]
            
          } else {
            dm = NULL

            createAlert(session, "alertAnchorSidePanelDataFormat", "alertWideMissesNumericTime", title = "Error",
                        content = helpText.server[["alertWideMissesNumericTime"]], 
                        append = FALSE,
                        style = "danger")
          }
        }
547 548
      }
      
549 550 551
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
552
      cat("server:dataInBoth else\n")
553 554
      dm = NULL
    }
555
    
556 557 558
    return(dm)
  })
  
559 560 561
  # Return a dt with mods depending on UI options::
  # - an added column with unique track object label created from the existing track id and prepended with columns chosen in the UI
  # - removed track IDs based on a separate file uploaded; the file should contain a single column with a header and unique track IDs
562
  dataMod <- reactive({
563
    if (DEB)
564
      cat(file = stdout(), 'server:dataMod\n')
565
    
566 567
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
568
    if (is.null(loc.dt))
569 570
      return(NULL)
    
571
    if (input$chBtrackUni) {
572
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
573
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:  
dmattek committed
574
    } else {
575
      # Leave track ID provided in the loaded dataset; has to be unique
576
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
577 578
    }
    
dmattek's avatar
Added:  
dmattek committed
579 580
    # remove trajectories based on uploaded csv
    if (input$chBtrajRem) {
581
      if (DEB)
582
        cat(file = stdout(), 'server:dataMod: trajRem not NULL\n')
dmattek's avatar
Added:  
dmattek committed
583 584
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
585
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
586 587
    }
    
588 589 590 591 592
    return(loc.dt)
  })
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
593
  #    realtime - selected from input
dmattek's avatar
dmattek committed
594
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
595
  #               (can be a single column or result of an operation on two cols)
596 597
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
598 599
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
600 601 602 603
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
604
  dataLong <- reactive({
605
    if (DEB)
606
      cat(file = stdout(), 'server:dataLong\n')
607 608
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
609
    if (is.null(loc.dt))
610 611
      return(NULL)
    
612
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
613
    if (input$inSelMath == '')
614 615 616 617 618 619
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
620
    # create expression for 'group' column
621 622
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
623 624 625 626 627 628 629 630 631 632 633
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
634
    
dmattek's avatar
dmattek committed
635 636

    # column name with time
637 638
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
639 640
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
641
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
642
    
dmattek's avatar
Added:  
dmattek committed
643 644
    
    # Find column names with position
645
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
646
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
647
    
648
    if (DEB)
649
      cat('server:dataLong:\n   Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
650 651
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
652 653 654 655
      locPos = TRUE
    else
      locPos = FALSE
    
656 657 658 659
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
660
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
661
    #cat('dataLong::loc.s.objnum ', loc.s.objnum, '\n')
662 663 664 665
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
666
      loc.s.objnum = loc.s.objnum[1]
667
      locObjNum = TRUE
dmattek's avatar
dmattek committed
668
    }
669 670
    
    
671 672
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
dmattek's avatar
dmattek committed
673
    if (sum(names(loc.dt) %in% COLIN) > 0)
674 675 676 677 678 679
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
dmattek's avatar
dmattek committed
680 681 682 683
    s.colexpr = paste0('.(',  COLY, ' = ', loc.s.y,
                       ', ', COLID, ' = ', COLIDUNI, 
                       ', ', COLGR, ' = ', loc.s.gr,
                       ', ', COLRT, ' = ', loc.s.rt)
684 685
    
    # account for the presence of 'mid.in' column in uploaded data
dmattek's avatar
dmattek committed
686
    # future: choose this column in UI
687 688
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
689
                         ',', COLIN, ' = ', COLIN)
690 691 692 693
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
694 695
                         ', ', COLPOSX, '= ', loc.s.pos.x,
                         ', ', COLPOSY, '= ', loc.s.pos.y)
696 697 698 699
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
700
                         ', ', COLOBJN, ' = ', loc.s.objnum)
701 702 703 704 705 706 707
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
708 709 710 711 712
    # Convert track ID to a factor.
    # This is necessary for, e.g. merging data with cluster assignments.
    # If input dataset has track ID as a number, such a merge would fail.
    loc.out[, (COLID) := as.factor(get(COLID))]
    
713 714 715 716 717 718
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
dmattek's avatar
dmattek committed
719
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', get(COLIN))]
720
      else
dmattek's avatar
Mod:  
dmattek committed
721
        # add a column with status of track selection
dmattek's avatar
dmattek committed
722
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
723
    }
724
      
dmattek's avatar
dmattek committed
725

726
    ## Interpolate missing data and NA data points
727
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
728
    # Tracks are interpolated only within first and last time points of every track id
729 730
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
731
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
732
    
733 734
    # Check for explicit NA's in the measurement columns
    # Has to be here (and not in dataMod()) because we need to know the name of the measurement column (COLY)
dmattek's avatar
dmattek committed
735 736 737 738 739 740 741 742
    if (sum(is.na(loc.out[[COLY]])))
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresent", title = "Warning",
                  content = helpText.server[["alertNAsPresent"]], 
                  append = FALSE,
                  style = "warning")
    else
      closeAlert(session, "alertNAsPresent")
    
743
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
744

745
    if (input$chBtrajInter) {
dmattek's avatar
dmattek committed
746 747 748 749 750 751
      # here we fill missing rows with NA's
      loc.out = loc.out[setkeyv(loc.out[, 
                                        .(seq(min(get(COLRT), na.rm = T), 
                                              max(get(COLRT), na.rm = T), 
                                              input$inSelTimeFreq)), 
                                        by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
752 753
      
      # x-check: print all rows with NA's
754
      if (DEB) {
755
        cat(file = stdout(), 'server:dataLong: Rows with NAs:\n')
756 757
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
758 759 760 761
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
762
        s.cols = c(COLY, COLPOSX, COLPOSY)
763
      else
dmattek's avatar
dmattek committed
764
        s.cols = c(COLY)
765
      
766 767 768 769 770 771 772 773
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

dmattek's avatar
dmattek committed
774
        loc.out[, (col) := na_interpolation(get(col)), by = c(COLID)]        
775 776 777
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
778 779 780 781 782 783 784 785 786 787 788 789 790 791
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
792
    
793
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
794
    if(input$chBtimeTrim) {
795
      loc.out = loc.out[get(COLRT) >= returnValSlTimeTrim()[[1]] & get(COLRT) <= returnValSlTimeTrim()[[2]] ]
dmattek's avatar
dmattek committed
796
    }
dmattek's avatar
dmattek committed
797
    
798
    ## Normalization
dmattek's avatar
dmattek committed
799
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
800
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
801
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
802
        in.dt = loc.out,
dmattek's avatar
dmattek committed
803 804
        in.meas.col = COLY,
        in.rt.col = COLRT,
805 806
        in.rt.min = returnValSlNormRtMinMax()[1],
        in.rt.max = returnValSlNormRtMinMax()[2],
dmattek's avatar
dmattek committed
807 808 809 810 811
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
812
      # Column with normalized data is renamed to the original name
813
      # Further code assumes column name y produced by dataLong
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
814 815
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
816
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
817 818 819
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
820 821
  })
  
dmattek's avatar
dmattek committed
822
  
823 824 825 826 827
  # Prepare data in wide format, ready for distance calculation in clustering
  # Return a matrix with:
  # - time series as rows
  # - time points as columns
  dataWide <- reactive({
828
    if (DEB)  
829
      cat(file = stdout(), 'server:dataWide\n')
dmattek's avatar
dmattek committed
830
    
831
    loc.dt = dataLongNoOut()
dmattek's avatar
dmattek committed
832 833 834
    if (is.null(loc.dt))
      return(NULL)
    
835 836 837 838
    # convert from long to wide format
    loc.dt.wide = dcast(loc.dt, 
                    reformulate(response = COLID, termlabels = COLRT), 
                    value.var = COLY)
dmattek's avatar
dmattek committed
839
    
840 841
    # store row names for later
    loc.rownames = loc.dt.wide[[COLID]]
dmattek's avatar
Mod:  
dmattek committed
842
    
843 844
    # omit first column that contains row names
    loc.m.out = as.matrix(loc.dt.wide[, -1])
dmattek's avatar
Added:  
dmattek committed
845
    
846 847
    # assign row names to the matrix
    rownames(loc.m.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
848
    
849 850 851 852 853 854 855 856 857 858 859 860
    # Check for missing time points
    # Missing rows in the long format give rise to NAs during dcast
    # Here, we are not checking for explicit NAs in COLY column
    if ((sum(is.na(loc.dt[[COLY]])) == 0) & (sum(is.na(loc.dt.wide)) > 0)) {
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresentLong2WideConv", title = "Warning",
                  content = helpText.server[["alertNAsPresentLong2WideConv"]], 
                  append = FALSE,
                  style = "warning")
    } else {
      closeAlert(session, "alertNAsPresentLong2WideConv")
    }
    
861
    return(loc.m.out)
dmattek's avatar
Mod:  
dmattek committed
862
  }) 
dmattek's avatar
dmattek committed
863
  
dmattek's avatar
dmattek committed
864
  
865 866 867
  # Prepare data with stimulation pattern
  # This dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  dataStim <- reactive({
868
    if (DEB)  
869
      cat(file = stdout(), 'server:dataStim\n')
870 871
    
    if (input$chBstim) {
872
      if (DEB)  
873
        cat(file = stdout(), 'server:dataStim: stim not NULL\n')
874 875 876 877
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
878
      if (DEB)  
879
        cat(file = stdout(), 'server:dataStim: stim is NULL\n')
880
      
881 882 883 884
      return(NULL)
    }
  })
  
885 886 887 888 889 890 891 892 893 894 895 896 897
  # Return all unique track object labels (created in dataMod)
  # Used to display track IDs in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    if (DEB)
      cat(file = stdout(), 'server:getDataTrackObjLabUni\n')
    
    loc.dt = dataMod()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[COLIDUNI]]))
  })
dmattek's avatar
dmattek committed
898
  
899 900 901 902 903 904 905
  
  # Return all unique time points (real time)
  # Used to set limits of sliders for trimming time and for normalisation
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
  getDataTpts <- reactive({
    if (DEB)
      cat(file = stdout(), 'server:getDataTpts\n')
dmattek's avatar
dmattek committed
906
    
907
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
908
    
909 910 911 912 913 914 915 916 917 918 919 920
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
  })
  
  
  # Return column names of the main dt
  # Used to fill UI input fields with a choice of column names
  getDataNucCols <- reactive({
    if (DEB)
      cat(file = stdout(), 'server:getDataNucCols: in\n')
dmattek's avatar
dmattek committed
921
    
922 923 924 925 926 927
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
dmattek's avatar
dmattek committed
928 929
  })
  
930 931 932 933 934 935 936
  # Unfinished f-n!
  # prepare y-axis label in time series plots, depending on UI setting
  createYaxisLabel = reactive({
    locLabel = input$inSelMeas1
    
    return(locLabel)
  })
dmattek's avatar
Added:  
dmattek committed
937
  
dmattek's avatar
dmattek committed
938 939 940
  # Plotting-trajectories ----

  # UI for selecting trajectories
941
  # The output data table of dataLong is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
942
  output$varSelHighlight = renderUI({
943
    if (DEB)  
944
      cat(file = stdout(), 'server:varSelHighlight\n')
dmattek's avatar
dmattek committed
945
    
dmattek's avatar
dmattek committed
946 947 948
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
949
    
dmattek's avatar
dmattek committed
950
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
951
    if (!is.null(loc.v)) {
952
      selectInput(
dmattek's avatar
dmattek committed
953
        'inSelHighlight',
954
        'Select one or more trajectories:',
dmattek's avatar
dmattek committed
955
        loc.v,
956
        width = '100%',
dmattek's avatar
dmattek committed
957
        multiple = TRUE
958
      )
dmattek's avatar
dmattek committed
959 960 961
    }
  })
  
962 963 964 965 966 967 968 969 970 971 972
  # Modules within main window ----
  
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = FCSVTCCLEAN,
    content = function(file) {
      write.csv(dataLongNoOut(), file, row.names = FALSE)
    }
  )

dmattek's avatar
dmattek committed
973
  # Taking out outliers 
974
  dataLongNoOut = callModule(modSelOutliers, 'returnOutlierIDs', dataLong)
dmattek's avatar
dmattek committed
975
  
dmattek's avatar
dmattek committed
976 977
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
978 979
             in.data = dataLongNoOut,
             in.data.stim = dataStim,
dmattek's avatar
dmattek committed
980
             in.fname = function() return(FPDFTCMEAN))
dmattek's avatar
dmattek committed
981
  
dmattek's avatar
dmattek committed
982
  # Trajectory plotting - individual
dmattek's avatar
dmattek committed
983
  callModule(modTrajPlot, 'modTrajPlot', 
984 985
             in.data = dataLongNoOut, 
             in.data.stim = dataStim,
dmattek's avatar
dmattek committed
986 987
             in.fname = function() {return(FPDFTCSINGLE)},
             in.ylab = createYaxisLabel)
dmattek's avatar
dmattek committed
988
  
989 990
  # Trajectory plotting - PSD
  c