Due to a scheduled upgrade to version 14.10, GitLab will be unavailabe on Monday 30.05., from 19:00 until 20:00.

auxfunc.R 39.3 KB
Newer Older
dmattek's avatar
dmattek committed
1
2
3
4
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
dmattek's avatar
dmattek committed
5
# Auxilary functions & definitions of global constants
dmattek's avatar
dmattek committed
6
7
8
#


Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
9
10
11
12
13
library(ggplot2)
library(RColorBrewer)
library(gplots) # for heatmap.2
library(grid) # for modifying grob
library(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15
16

# Global parameters ----
17
18
19
# number of miliseconds to delay reactions to changes in the UI
# used to delay output from sliders
MILLIS = 1000
dmattek's avatar
dmattek committed
20

21
22
23
# Number of significant digits to display in table stats
SIGNIFDIGITSINTAB = 3

24
25
26
# if true, additional output printed to R console
DEB = T

27
# font sizes in pts for plots in the manuscript
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
28
29
30
31
32
33
# PLOTFONTBASE = 8
# PLOTFONTAXISTEXT = 8
# PLOTFONTAXISTITLE = 8
# PLOTFONTFACETSTRIP = 10
# PLOTFONTLEGEND = 8

dmattek's avatar
dmattek committed
34
# font sizes in pts for screen display
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
35
36
37
38
39
40
41
42
43
44
45
46
47
PLOTFONTBASE = 16
PLOTFONTAXISTEXT = 16
PLOTFONTAXISTITLE = 16
PLOTFONTFACETSTRIP = 20
PLOTFONTLEGEND = 16

# height (in pixels) of ribbon and single traj. plots
PLOTRIBBONHEIGHT = 500 # in pixels
PLOTTRAJHEIGHT = 500 # in pixels
PLOTPSDHEIGHT = 500 # in pixels
PLOTBOXHEIGHT = 500 # in pixels
PLOTSCATTERHEIGHT = 500 # in pixels
PLOTWIDTH = 85 # in percent
48
49

# default number of facets in plots
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
50
PLOTNFACETDEFAULT = 3
51

dmattek's avatar
dmattek committed
52
# internal column names
dmattek's avatar
dmattek committed
53
COLRT   = 'time'
dmattek's avatar
dmattek committed
54
55
56
57
58
59
60
61
62
63
COLY    = 'y'
COLID   = 'id'
COLIDUNI = 'trackObjectsLabelUni'
COLGR   = 'group'
COLIN   = 'mid.in'
COLOBJN = 'obj.num'
COLPOSX = 'pos.x'
COLPOSY = 'pos.y'
COLIDX = 'IDX'
COLIDXDIFF = 'IDXdiff'
dmattek's avatar
dmattek committed
64
COLCL = 'cl'
dmattek's avatar
dmattek committed
65
66
67
68
69
70

# file names
FCSVOUTLIERS = 'outliers.csv'
FCSVTCCLEAN  = 'tCoursesSelected_clean.csv'
FPDFTCMEAN   = "tCoursesMeans.pdf"
FPDFTCSINGLE = "tCourses.pdf"
71
FPDFTCPSD    = 'tCoursesPsd.pdf'
dmattek's avatar
dmattek committed
72
73
74
75
FPDFBOXAUC   = 'boxplotAUC.pdf'
FPDFBOXTP    = 'boxplotTP.pdf'
FPDFSCATTER  = 'scatter.pdf'

dmattek's avatar
dmattek committed
76
# Colour definitions ----
dmattek's avatar
dmattek committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

102
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
103
l.col.pal = list(
dmattek's avatar
dmattek committed
104
105
106
107
  "Spectral" = 'Spectral',
  "Red-Yellow-Green" = 'RdYlGn',
  "Red-Yellow-Blue" = 'RdYlBu',
  "Greys" = "Greys",
dmattek's avatar
dmattek committed
108
109
110
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
dmattek's avatar
dmattek committed
111
  "Blues" = "Blues"
dmattek's avatar
dmattek committed
112
113
)

114
115
116
117
118
119
120
121
122
123
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
124
125
126
127
128
129
130
131
132
133
134
# list of palettes for the dendrogram
l.col.pal.dend.2 = list(
  "Colorblind 10" = 'Color Blind',
  "Tableau 10" = 'Tableau 10',
  "Tableau 20" = 'Tableau 20',
  "Classic 10" = "Classic 10",
  "Classic 20" = "Classic 20",
  "Traffic 9" = 'Traffic',
  "Seattle Grays 5" = 'Seattle Grays'
)

dmattek's avatar
dmattek committed
135
# Help text ----
dmattek's avatar
dmattek committed
136
helpText.server = c(
dmattek's avatar
dmattek committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  alDataFormat =  paste0(
    "<p>Switch between long and wide formats of input data. ",
    "TCI accepts CSV or compressed CSV files (gz or bz2).</p>",
    "<p><b>Long format</b> - a row is a single data point and consecutive time series are arranged vertically. ",
    "Data file should contain at least 3 columns separated with a comma:</p>",
    "<li>Identifier of a time series</li>",
    "<li>Time points</li>",
    "<li>A time-varying variable</li>",
    "<br>",
    "<p><b>Wide format</b> - a row is a time series with columns as time points.",
    "At least 3 columns shuold be present:</p>",
    "<li>First two columns in wide format should contain grouping and track IDs</li>",
    "<li>A column with a time point. Headers of columns with time points need to be numeric</li>"
  ),
  inDataGen1 =   paste0(
    "Generate 3 groups with 20 random synthetic time series. ",
    "Every time series contains 101 time points. ",
    "Track IDs are unique across entire dataset."
  ),
  chBtrajRem =   paste0(
    "Load CSV file with a column of track IDs for removal. ",
    "IDs should correspond to those used for plotting."
  ),
  chBstim =      paste0(
    "Load CSV file with stimulation pattern. Should contain 5 columns: ",
    "grouping, start and end time points of stimulation, start and end of y-position, dummy column with ID."
  ),
  chBtrajInter = paste0(
    "Interpolate missing measurements indicated with NAs in the data file. ",
    "In addition, interpolate a row that is completely missing from the data. ",
    "The interval of the time column must be provided to know which rows are missing."
  ),
  chBtrackUni =  paste0(
    "If the track ID in the uploaded dataset is unique only within a group (e.g. an experimental condition), ",
    "make it unique by prepending other columns to the track ID (typically a grouping column)."
  ),
dmattek's avatar
dmattek committed
173
174
175
176
177
178
179
180
181
  chBgroup    = "Select columns to group data according to treatment, condition, etc.",
  inSelMath   = "Select math operation to perform on a single or two measurement columns,",
  chBtimeTrim = "Trim time for further processing.",
  chBnorm     = "Divide measurements by the mean/median or calculate z-score with respect to selected time span.",
  rBnormMeth  = "Fold-change or z-score with respect to selected time span.",
  slNormRtMinMax = "Normalise with respect to this time span.",
  chBnormRobust  = "Calculate fold-change and z-score using the median and Median Absolute Deviation, instead of the mean and standard deviation.",
  chBnormGroup   = "Normalise to mean/median of selected time calculated globally, per group, or for individual time series.",
  downloadDataClean = "Download all time series after modifications in this panel.",
182
183
  alertNAsPresent              = "NAs present in the measurement column. Consider interpolation.",
  alertNAsPresentLong2WideConv = "Missing rows. Consider interpolation.",
dmattek's avatar
dmattek committed
184
  alertWideMissesNumericTime = "Non-numeric headers of time columns. Data in wide format should have numeric column headers corresponding to time points.",
dmattek's avatar
dmattek committed
185
  alertWideTooFewColumns     = "Insufficient columns. Data in wide format should contain at least 3 columns: grouping, track ID, and a single time point."
186
187
)

dmattek's avatar
dmattek committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
dmattek's avatar
dmattek committed
213
214
215
216
217
LOCcalcTrajCI = function(in.dt,
                         in.col.meas,
                         in.col.by = NULL,
                         in.type = c('normal', 'boot'),
                         ...) {
dmattek's avatar
dmattek committed
218
219
220
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
dmattek's avatar
dmattek committed
221
222
223
224
225
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by]
  else
    loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
  
  return(loc.dt)
dmattek's avatar
dmattek committed
226
227
}

228

229
230
231
232
233
234
235
236
237
#' Calculate standard error of the mean
#'
#' @param x Vector
#' @param na.rm Remove NAs; default = FALSE
#'
#' @return A scalar with the result
#' @export
#'
#' @examples
dmattek's avatar
dmattek committed
238
239
LOCstderr = function(x, na.rm = FALSE) {
  if (na.rm)
240
241
    x = na.omit(x)
  
dmattek's avatar
dmattek committed
242
  return(sqrt(var(x) / length(x)))
243
244
}

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#' Calculate the power spectrum density for time-series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.id Name of the column with the unique series identifier
#' @param in.col.by Column names for grouping (default NULL - no grouping). PSD of individual trajectories will be averaged within a group.
#' @param in.method Name of the method for PSD estimation, must be one of c("pgram", "ar"). Default to "pgram*.
#' @param in.return.period Wheter to return densities though periods (1/frequencies) instead of frequencies.
#' @param ... Other paramters to pass to stats::spectrum()
#'
#' @return Datatable with columns: (frequency or period), spec (the density) and grouping column
#' @export
#' @import data.table
#'
#' @examples
LOCcalcPSD <- function(in.dt,
dmattek's avatar
dmattek committed
261
262
263
264
265
266
267
                       in.col.meas,
                       in.col.id,
                       in.col.by,
                       in.method = "pgram",
                       in.return.period = TRUE,
                       in.time.btwPoints = 1,
                       ...) {
268
  require(data.table)
269
  # Method "ar" returns $spec as matrix whereas "pgram" returns a vector, custom function to homogenze output format
dmattek's avatar
dmattek committed
270
271
  mySpectrum <- function(x, ...) {
    args_spec <- list(x = x, plot = FALSE)
272
273
274
275
276
277
    inargs <- list(...)
    args_spec[names(inargs)] <- inargs
    out <- do.call(spectrum, args_spec)
    out$spec <- as.vector(out$spec)
    return(out)
  }
dmattek's avatar
dmattek committed
278
  if (!in.method %in% c("pgram", "ar")) {
279
280
    stop('Method should be one of: c("pgram", "ar"')
  }
dmattek's avatar
dmattek committed
281
282
  dt_spec <-
    in.dt[, (mySpectrum(get(in.col.meas), plot = FALSE, method = in.method)[c("freq", "spec")]), by = in.col.id]
283
284
285
  dt_group <- in.dt[, .SD[1, get(in.col.by)], by = in.col.id]
  setnames(dt_group, "V1", in.col.by)
  dt_spec <- merge(dt_spec, dt_group, by = in.col.id)
dmattek's avatar
dmattek committed
286
287
288
289
  dt_agg <-
    dt_spec[, .(spec = mean(spec)), by = c(in.col.by, "freq")]
  if (in.return.period) {
    dt_agg[, period := 1 / freq]
290
291
292
    dt_agg[, freq := NULL]
    # Adjust period unit to go from frame unit  to time unit
    dt_agg[, period := period * in.time.btwPoints]
293
  } else {
dmattek's avatar
dmattek committed
294
    dt_agg[, freq := freq * (1 / in.time.btwPoints)]
295
    setnames(dt_agg, "freq", "frequency")
296
297
298
299
300
  }
  return(dt_agg)
}


301
#' Generate synthetic CellProfiler output with single-cell time series
dmattek's avatar
dmattek committed
302
303
304
305
306
307
308
309
310
311
312
313
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

dmattek's avatar
dmattek committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
LOCgenTraj <-
  function(in.ntpts = 60,
           in.ntracks = 10,
           in.nfov = 6,
           in.nwells = 1,
           in.addna = NULL,
           in.addout = NULL) {
    x.rand.1 = c(
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.5, 0.1),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3,   1, 0.2),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3,  2, 0.5)
    )
    x.rand.2 = c(
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.25, 0.1),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.5, 0.2),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 1, 0.2)
    )
    
    # add NA's for testing
    if (!is.null(in.addna)) {
      locTabLen = length(x.rand.1)
      x.rand.1[round(runif(in.addna) * locTabLen)] = NA
      x.rand.2[round(runif(in.addna) * locTabLen)] = NA
    }
    
    # add outliers for testing
    if (!is.null(in.addout)) {
      locTabLen = length(x.rand.1)
      x.rand.1[round(runif(in.addout) * locTabLen)] = 5
      x.rand.2[round(runif(in.addout) * locTabLen)] = 5
    }
    
    x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
    
    dt.nuc = data.table(
      well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
      group = rep(1:in.nfov, each = in.ntpts * in.ntracks),
      time = x.arg,
      y1 = x.rand.1,
      y2  = x.rand.2,
      posx = runif(
        in.ntpts * in.ntracks * in.nfov,
        min = 0,
        max = 1
      ),
      posy = runif(
        in.ntpts * in.ntracks * in.nfov,
        min = 0,
        max = 1
      ),
      id = rep(1:(in.ntracks * in.nfov), each = in.ntpts)
    )
    
    return(dt.nuc)
dmattek's avatar
dmattek committed
368
  }
dmattek's avatar
dmattek committed
369

dmattek's avatar
dmattek committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
LOCgenTraj2 <-
  function(n_perGroup = 20,
           sd_noise = 0.01,
           sampleFreq = 0.2,
           endTime = 50)
  {
    # Function definition ----------------------------------
    sim_expodecay_lagged_stim <-
      function (n,
                noise,
                interval.stim = 5,
                lambda = 0.2,
                freq = 0.2,
                end = 40)
      {
        require(data.table)
        tvec <- seq(0, end, by = freq)
        stim_time <- seq(interval.stim, end, interval.stim)
        stim_time_matrix <-
          matrix(stim_time, nrow = length(stim_time),
                 ncol = n)
        noise_matrix <- abs(replicate(n, rnorm(
          n = length(stim_time),
          mean = 0,
          sd = noise
        )))
        stim_time_matrix <- stim_time_matrix + noise_matrix
        trajs <- matrix(0, nrow = length(tvec), ncol = n)
        for (col in 1:ncol(stim_time_matrix)) {
          for (row in 1:nrow(stim_time_matrix)) {
            index <- which(tvec >= stim_time_matrix[row, col])[1]
            trajs[index, col] <- 1
          }
403
        }
dmattek's avatar
dmattek committed
404
405
406
407
408
409
        decrease_factor <- exp(-lambda * freq)
        for (col in 1:ncol(trajs)) {
          for (row in 2:nrow(trajs)) {
            if (trajs[row, col] != 1) {
              trajs[row, col] <- trajs[row - 1, col] * decrease_factor
            }
410
411
          }
        }
dmattek's avatar
dmattek committed
412
413
414
415
416
        trajs <- as.data.table(trajs)
        trajs <- cbind(seq(0, end, by = freq), trajs)
        colnames(trajs)[1] <- "Time"
        trajs <- melt(trajs, id.vars = "Time")
        return(trajs)
417
      }
dmattek's avatar
dmattek committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    
    
    # Dataset creation -----------------------------------------------
    dt1 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.4,
        freq = sampleFreq,
        end = endTime
      )
    dt2 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.1,
        freq = sampleFreq,
        end = endTime
      )
    dt3 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.4,
        freq = sampleFreq,
        end = endTime
      )
    dt3[, value := value / 3]
    
    dt1[, Group := "fastDecay"]
    dt2[, Group := "slowDecay"]
    dt3[, Group := "lowAmplitude"]
    
    dt <- rbindlist(list(dt1, dt2, dt3))
    dt[, ID := sprintf("%s_%02d", Group, as.integer(gsub('[A-Z]', '', variable)))]
    dt[, variable := NULL]
    dt[, Group := as.factor(Group)]
    
    dt[, value := value + runif(1, -0.1, 0.1), by = .(Group, ID)]
    noise_vec <- rnorm(n = nrow(dt), mean = 0, sd = sd_noise)
    dt[, value := value + noise_vec]
    
    setnames(dt, "value", "Meas")
    setcolorder(dt, c("Group", "ID", "Time", "Meas"))
    
    return(dt)
  }
468

dmattek's avatar
dmattek committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
dmattek's avatar
dmattek committed
491
492
493
494
495
496
497
                       in.meas.col,
                       in.rt.col = COLRT,
                       in.rt.min = 10,
                       in.rt.max = 20,
                       in.by.cols = NULL,
                       in.robust = TRUE,
                       in.type = 'z.score') {
dmattek's avatar
dmattek committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# Cluster validation ----

#Customize factoextra functions to accept dissimilarity matrix from start. Otherwise can't use distance functions that are not in base R, like DTW.
# Inherit and adapt hcut function to take input from UI, used for fviz_clust

LOChcut <-
function(x,
         k = 2,
         isdiss = inherits(x, "dist"),
         hc_func = "hclust",
         hc_method = "average",
         hc_metric = "euclidean") {

    if (!inherits(x, "dist")) {
    stop("x must be a distance matrix")
  }
  return(
    factoextra::hcut(
      x = x,
      k = k,
      isdiss = TRUE,
      hc_func = hc_func,
      hc_method = hc_method,
      hc_metric = hc_metric
    )
  )
}

# Modified from factoextra::fviz_nbclust
# Allow (actually enforce) x to be a distance matrix; no GAP statistics for compatibility

LOCnbclust <-
  function (x,
            FUNcluster = LOChcut,
            method = c("silhouette", "wss"),
            k.max = 10,
            verbose = FALSE,
            barfill = "steelblue",
            barcolor = "steelblue",
            linecolor = "steelblue",
            print.summary = TRUE,
            ...)
  {
    set.seed(123)
    
    if (k.max < 2)
      stop("k.max must bet > = 2")
    
    method = match.arg(method)
    
    if (!inherits(x, c("dist")))
      stop("x should be an object of class dist")
    
    else if (is.null(FUNcluster))
      stop(
        "The argument FUNcluster is required. ",
        "Possible values are kmeans, pam, hcut, clara, ..."
      )
    
    else if (method %in% c("silhouette", "wss")) {
      diss <- x  # x IS ENFORCED TO BE A DISSIMILARITY MATRIX
      
      v <- rep(0, k.max)
      
      if (method == "silhouette") {
        loc.mainlab = "Optimal number of clusters from silhouette analysis"
        loc.ylab <- "Average silhouette width"
        for (i in 2:k.max) {
          clust <- FUNcluster(x, i, ...)
          v[i] <-
            factoextra:::.get_ave_sil_width(diss, clust$cluster)
        }
      }
      else if (method == "wss") {
        loc.mainlab = "Optimal number of clusters from within cluster sum of squares"
        
        loc.ylab <- "Total within cluster sum of squares"
        
        for (i in 1:k.max) {
          clust <- FUNcluster(x, i, ...)
          v[i] <- factoextra:::.get_withinSS(diss, clust$cluster)
        }
      }
      
      df <- data.frame(clusters = as.factor(1:k.max), y = v)
      
      p <- ggpubr::ggline(
        df,
        x = "clusters",
        y = "y",
        group = 1,
        color = linecolor,
        ylab = loc.ylab,
        xlab = "Number of clusters",
        main = loc.mainlab
      )
635

636
637
638
      return(p)
    }
  }
dmattek's avatar
Added:    
dmattek committed
639

640
# Clustering ----
dmattek's avatar
dmattek committed
641
642
643
644
645
646
647
648
649

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:    
dmattek committed
650
651
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
652
  loc.clAssign = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE, )
dmattek's avatar
dmattek committed
653
654
655
656
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
dmattek's avatar
dmattek committed
657
658
659
  loc.dt.clAssign = as.data.table(loc.clAssign, keep.rownames = T)
  setnames(loc.dt.clAssign, c(COLID, COLCL))
  
dmattek's avatar
dmattek committed
660
  
661
662
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
663
  return(loc.dt.clAssign)
dmattek's avatar
Added:    
dmattek committed
664
665
}

dmattek's avatar
dmattek committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
685
686
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
687
688
689
690
691
  return(loc.dt.cl)
}



dmattek's avatar
Added:    
dmattek committed
692
693
694
695
696
697
698
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
dmattek's avatar
dmattek committed
699
700
701
702
703
    data.table(
      cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
      cl.col = loc.col_labels
    )
  ))
dmattek's avatar
Added:    
dmattek committed
704
705
}

dmattek's avatar
dmattek committed
706
# Custom plotting functions ----
dmattek's avatar
dmattek committed
707

dmattek's avatar
dmattek committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
dmattek's avatar
dmattek committed
723
724
725
726
                          in.font.axis.text = 12,
                          in.font.axis.title = 12,
                          in.font.strip = 14,
                          in.font.legend = 12) {
dmattek's avatar
dmattek committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
dmattek's avatar
dmattek committed
742
743
      legend.key.width = unit(2, "lines")
    )
dmattek's avatar
dmattek committed
744
745
746
747
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
748
749
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
750
751
752
753
754
LOCrotatedAxisElementText = function(angle,
                                     position = 'x',
                                     size = 12) {
  angle     = angle[1]
  
dmattek's avatar
dmattek committed
755
  position  = position[1]
dmattek's avatar
dmattek committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
  positions = list(
    x = 0,
    y = 90,
    top = 180,
    right = 270
  )
  if (!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]", paste(names(positions), collapse =
                                                           ", ")), call. = FALSE)
  if (!is.numeric(angle))
    stop("'angle' must be numeric", call. = FALSE)
  rads = (-angle - positions[[position]]) * pi / 180
  hjust = round((1 - sin(rads))) / 2
  vjust = round((1 + cos(rads))) / 2
  element_text(
    size = size,
    angle = angle,
    vjust = vjust,
    hjust = hjust
  )
dmattek's avatar
dmattek committed
776
777
}

778
# Plot individual time series
dmattek's avatar
dmattek committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
LOCplotTraj = function(dt.arg,
                       # input data table
                       x.arg,
                       # string with column name for x-axis
                       y.arg,
                       # string with column name for y-axis
                       group.arg,
                       # string with column name for grouping time series (typicaly cell ID)
                       facet.arg,
                       # string with column name for facetting
                       facet.ncol.arg = 2,
                       # default number of facet columns
                       facet.color.arg = NULL,
                       # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                       line.col.arg = NULL,
                       # string with column name for colouring time series (typically when individual time series are selected in UI)
                       xlab.arg = NULL,
                       # string with x-axis label
                       ylab.arg = NULL,
                       # string with y-axis label
                       plotlab.arg = NULL,
                       # string with plot label
                       dt.stim.arg = NULL,
                       # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
                       x.stim.arg = c('tstart', 'tend'),
                       # column names in stimulation dt with x and xend parameters
                       y.stim.arg = c('ystart', 'yend'),
                       # column names in stimulation dt with y and yend parameters
                       tfreq.arg = 1,
                       # unused
                       xlim.arg = NULL,
                       # limits of x-axis; for visualisation only, not trimmimng data
                       ylim.arg = NULL,
                       # limits of y-axis; for visualisation only, not trimmimng data
                       stim.bar.width.arg = 0.5,
                       # width of the stimulation line; plotted under time series
                       aux.label1 = NULL,
                       # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
                       aux.label2 = NULL,
                       aux.label3 = NULL,
                       stat.arg = c('', 'mean', 'CI', 'SE')) {
dmattek's avatar
Added:    
dmattek committed
820
821
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)
dmattek's avatar
dmattek committed
822
  
dmattek's avatar
Added:    
dmattek committed
823
824
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
825
  p.tmp = ggplot(dt.arg,
dmattek's avatar
dmattek committed
826
827
828
829
830
831
                 aes_string(
                   x = x.arg,
                   y = y.arg,
                   group = group.arg,
                   label = group.arg
                 ))
832
833
834
835
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
836
  
dmattek's avatar
dmattek committed
837
838
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
839
840
      geom_line(alpha = 0.25,
                size = 0.25)
dmattek's avatar
dmattek committed
841
842
  }
  else {
dmattek's avatar
dmattek committed
843
844
845
846
847
848
849
850
851
852
853
854
855
    p.tmp = p.tmp +
      geom_line(aes_string(colour = line.col.arg),
                alpha = 0.5,
                size = 0.5) +
      scale_color_manual(
        name = '',
        values = c(
          "FALSE" = rhg_cols[7],
          "TRUE" = rhg_cols[3],
          "SELECTED" = 'green',
          "NOT SEL" = rhg_cols[7]
        )
      )
dmattek's avatar
dmattek committed
856
  }
dmattek's avatar
dmattek committed
857
  
dmattek's avatar
Mod:    
dmattek committed
858
859
860
861
862
863
864
865
  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:    
dmattek committed
866
867
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:    
dmattek committed
868
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
869
870
871
872
873
874
      geom_hline(
        data = loc.dt.cl,
        colour = facet.color.arg,
        yintercept = loc.y.max,
        size = 4
      ) +
dmattek's avatar
Mod:    
dmattek committed
875
876
877
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
878
  
dmattek's avatar
Added:    
dmattek committed
879
  if ('mean' %in% loc.stat)
dmattek's avatar
dmattek committed
880
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
881
882
    stat_summary(
      aes_string(y = y.arg, group = 1),
dmattek's avatar
dmattek committed
883
      fun.y = mean,
dmattek's avatar
dmattek committed
884
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
885
      colour = 'red',
dmattek's avatar
dmattek committed
886
887
888
889
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:    
dmattek committed
890
    )
dmattek's avatar
dmattek committed
891
  
dmattek's avatar
Added:    
dmattek committed
892
  if ('CI' %in% loc.stat)
dmattek's avatar
dmattek committed
893
    p.tmp = p.tmp +
dmattek's avatar
Added:    
dmattek committed
894
895
896
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
dmattek's avatar
dmattek committed
897
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
898
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
899
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
900
901
902
903
904
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
dmattek's avatar
dmattek committed
905
    p.tmp = p.tmp +
dmattek's avatar
Added:    
dmattek committed
906
907
908
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
dmattek's avatar
dmattek committed
909
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
910
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
911
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
912
913
914
915
916
917
      geom = "ribbon",
      group = 1
    )
  
  
  
dmattek's avatar
dmattek committed
918
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
919
920
921
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
dmattek's avatar
dmattek committed
922
  
923
924
925
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
926
927
928
929
930
931
932
933
934
935
936
937
938
  if (!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(
      data = dt.stim.arg,
      aes_string(
        x = x.stim.arg[1],
        xend = x.stim.arg[2],
        y = y.stim.arg[1],
        yend = y.stim.arg[2],
        group = 'group'
      ),
      colour = rhg_cols[[3]],
      size = stim.bar.width.arg
    )
dmattek's avatar
dmattek committed
939
940
  }
  
dmattek's avatar
dmattek committed
941
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
dmattek's avatar
dmattek committed
942
  
dmattek's avatar
dmattek committed
943
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
944
945
946
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
dmattek's avatar
dmattek committed
947
948
949
950
951
952
953
    LOCggplotTheme(
      in.font.base = PLOTFONTBASE,
      in.font.axis.text = PLOTFONTAXISTEXT,
      in.font.axis.title = PLOTFONTAXISTITLE,
      in.font.strip = PLOTFONTFACETSTRIP,
      in.font.legend = PLOTFONTLEGEND
    ) +
954
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
955
  
dmattek's avatar
Mod:    
dmattek committed
956
  return(p.tmp)
dmattek's avatar
dmattek committed
957
958
}

959
# Plot average time series with CI together in one facet
dmattek's avatar
dmattek committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
LOCplotTrajRibbon = function(dt.arg,
                             # input data table
                             x.arg,
                             # string with column name for x-axis
                             y.arg,
                             # string with column name for y-axis
                             group.arg = NULL,
                             # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                             col.arg = NULL,
                             # colour pallette for individual time series
                             dt.stim.arg = NULL,
                             # data table with stimulation pattern
                             x.stim.arg = c('tstart', 'tend'),
                             # column names in stimulation dt with x and xend parameters
                             y.stim.arg = c('ystart', 'yend'),
                             # column names in stimulation dt with y and yend parameters
                             stim.bar.width.arg = 0.5,
                             xlim.arg = NULL,
                             # limits of x-axis; for visualisation only, not trimmimng data
                             ylim.arg = NULL,
                             # limits of y-axis; for visualisation only, not trimmimng data
                             ribbon.lohi.arg = c('Lower', 'Upper'),
                             # column names containing lower and upper bound for plotting the ribbon, e.g. for CI; set to NULL to avoid plotting the ribbon
                             ribbon.fill.arg = 'grey50',
                             ribbon.alpha.arg = 0.5,
                             xlab.arg = NULL,
                             ylab.arg = NULL,
                             plotlab.arg = NULL) {
988
989
990
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg))
  
  if (!is.null(ribbon.lohi.arg))
dmattek's avatar
dmattek committed
991
992
993
994
995
996
    p.tmp = p.tmp +
      geom_ribbon(
        aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
        fill = ribbon.fill.arg,
        alpha = ribbon.alpha.arg
      )
997
998
  
  p.tmp = p.tmp + geom_line(aes_string(y = y.arg, colour = group.arg))
999
  
dmattek's avatar
dmattek committed
1000
  
1001
1002
1003
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
  if (!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(
      data = dt.stim.arg,
      aes_string(
        x = x.stim.arg[1],
        xend = x.stim.arg[2],
        y = y.stim.arg[1],
        yend = y.stim.arg[2]
      ),
      colour = rhg_cols[[3]],
      size = stim.bar.width.arg,
      group = 1
    )
1017
  }
dmattek's avatar
dmattek committed
1018
  
dmattek's avatar
dmattek committed
1019
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
1037
1038
}

1039
# Plot average power spectrum density per facet
dmattek's avatar
dmattek committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
LOCplotPSD <- function(dt.arg,
                       # input data table
                       x.arg,
                       # string with column name for x-axis
                       y.arg,
                       # string with column name for y-axis
                       group.arg = NULL,
                       # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                       xlab.arg = x.arg,
                       ylab.arg = y.arg,
                       facet.color.arg = NULL) {
majpark21's avatar
majpark21 committed
1051
  require(ggplot2)
dmattek's avatar
dmattek committed
1052
1053
1054
1055
  if (length(setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))) > 0) {
    stop(paste("Missing columns in dt.arg: ", setdiff(
      c(x.arg, y.arg, group.arg), colnames(dt.arg)
    )))
majpark21's avatar
majpark21 committed
1056
  }
dmattek's avatar
dmattek committed
1057
  p.tmp <- ggplot(dt.arg, aes_string(x = x.arg, y = y.arg)) +
majpark21's avatar
majpark21 committed
1058
    geom_line() +
dmattek's avatar
dmattek committed
1059
1060
1061
    geom_rug(sides = "b",
             alpha = 1,
             color = "lightblue") +
majpark21's avatar
majpark21 committed
1062
1063
    facet_wrap(group.arg) +
    labs(x = xlab.arg, y = ylab.arg)
1064
  
1065
1066
1067
1068
1069
1070
1071
  if (!is.null(facet.color.arg)) {
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', group.arg)
    
    # adjust facet.color.arg to plot
    
1072
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
1073
1074
1075
1076
1077
1078
      geom_hline(
        data = loc.dt.cl,
        colour = facet.color.arg,
        yintercept = loc.y.max,
        size = 4
      ) +
1079
1080
      scale_colour_manual(values = facet.color.arg,
                          name = '')
1081
1082
  }
  
majpark21's avatar
majpark21 committed
1083
1084
  return(p.tmp)
}
1085

dmattek's avatar
dmattek committed
1086
1087
1088
#' Plot a scatter plot with an optional linear regression
#'
#' @param dt.arg input of data.table with 2 columns with x and y coordinates
dmattek's avatar
dmattek committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
#' @param facet.arg
#' @param facet.ncol.arg
#' @param xlab.arg
#' @param ylab.arg
#' @param plotlab.arg
#' @param alpha.arg
#' @param trend.arg
#' @param ci.arg

LOCggplotScat = function(dt.arg,
                         facet.arg = NULL,
                         facet.ncol.arg = 2,
                         xlab.arg = NULL,
                         ylab.arg = NULL,
                         plotlab.arg = NULL,
                         alpha.arg = 1,
                         trend.arg = T,
                         ci.arg = 0.95) {
dmattek's avatar
dmattek committed
1107
  p.tmp = ggplot(dt.arg, aes(x = x, y = y, label = id)) +
dmattek's avatar
dmattek committed
1108
    geom_point(alpha = alpha.arg)
dmattek's avatar
dmattek committed
1109
  
dmattek's avatar
dmattek committed
1110
  if (trend.arg) {
dmattek's avatar
dmattek committed
1111
1112
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
1113
        method = "lm",
dmattek's avatar
dmattek committed
1114
        fullrange = FALSE,
dmattek's avatar
dmattek committed
1115
        level = ci.arg,
dmattek's avatar
dmattek committed
1116
1117
1118
        colour = 'blue'
      )
  }
dmattek's avatar
dmattek committed
1119
  
dmattek's avatar
dmattek committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
1140
1141
1142
1143
1144
1145
1146
    LOCggplotTheme(
      in.font.base = PLOTFONTBASE,
      in.font.axis.text = PLOTFONTAXISTEXT,
      in.font.axis.title = PLOTFONTAXISTITLE,
      in.font.strip = PLOTFONTFACETSTRIP,
      in.font.legend = PLOTFONTLEGEND
    ) +
1147
    theme(legend.position = "none")
dmattek's avatar
dmattek committed
1148
  
dmattek's avatar
dmattek committed
1149
1150
  return(p.tmp)
}
dmattek's avatar
dmattek committed
1151

1152

dmattek's avatar
dmattek committed
1153
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
dmattek committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
                           dend.arg,
                           palette.arg,
                           palette.rev.arg = TRUE,
                           dend.show.arg = TRUE,
                           key.show.arg = TRUE,
                           margin.x.arg = 5,
                           margin.y.arg = 20,
                           nacol.arg = 0.5,
                           colCol.arg = NULL,
                           labCol.arg = NULL,
                           font.row.arg = 1,
                           font.col.arg = 1,
                           breaks.arg = NULL,
                           title.arg = 'Clustering') {
1168
1169
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:    
dmattek committed
1170
1171
  if (palette.rev.arg)
    my_palette <-
dmattek's avatar
dmattek committed
1172
      rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:    
dmattek committed
1173
1174
  else
    my_palette <-
dmattek's avatar
dmattek committed
1175
      colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:    
dmattek committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
1211
1212
    main = title.arg,
    symbreaks = FALSE,
1213
    symkey = FALSE,
dmattek's avatar
dmattek committed
1214
1215
1216
1217
    breaks = if (is.null(breaks.arg))
      NULL
    else
      seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks + 1)
dmattek's avatar
Mod:    
dmattek committed
1218
1219
1220
1221
  )
  
  return(loc.p)
}