auxfunc.R 39.3 KB
Newer Older
dmattek's avatar
dmattek committed
1 2 3 4
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
dmattek's avatar
dmattek committed
5
# Auxilary functions & definitions of global constants
dmattek's avatar
dmattek committed
6 7 8
#


Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
9 10 11 12 13
library(ggplot2)
library(RColorBrewer)
library(gplots) # for heatmap.2
library(grid) # for modifying grob
library(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15 16

# Global parameters ----
17 18 19
# number of miliseconds to delay reactions to changes in the UI
# used to delay output from sliders
MILLIS = 1000
dmattek's avatar
dmattek committed
20

21 22 23
# Number of significant digits to display in table stats
SIGNIFDIGITSINTAB = 3

24 25 26
# if true, additional output printed to R console
DEB = T

27
# font sizes in pts for plots in the manuscript
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
28 29 30 31 32 33
# PLOTFONTBASE = 8
# PLOTFONTAXISTEXT = 8
# PLOTFONTAXISTITLE = 8
# PLOTFONTFACETSTRIP = 10
# PLOTFONTLEGEND = 8

dmattek's avatar
dmattek committed
34
# font sizes in pts for screen display
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
35 36 37 38 39 40 41 42 43 44 45 46 47
PLOTFONTBASE = 16
PLOTFONTAXISTEXT = 16
PLOTFONTAXISTITLE = 16
PLOTFONTFACETSTRIP = 20
PLOTFONTLEGEND = 16

# height (in pixels) of ribbon and single traj. plots
PLOTRIBBONHEIGHT = 500 # in pixels
PLOTTRAJHEIGHT = 500 # in pixels
PLOTPSDHEIGHT = 500 # in pixels
PLOTBOXHEIGHT = 500 # in pixels
PLOTSCATTERHEIGHT = 500 # in pixels
PLOTWIDTH = 85 # in percent
48 49

# default number of facets in plots
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
50
PLOTNFACETDEFAULT = 3
51

dmattek's avatar
dmattek committed
52
# internal column names
dmattek's avatar
dmattek committed
53
COLRT   = 'time'
dmattek's avatar
dmattek committed
54 55 56 57 58 59 60 61 62 63
COLY    = 'y'
COLID   = 'id'
COLIDUNI = 'trackObjectsLabelUni'
COLGR   = 'group'
COLIN   = 'mid.in'
COLOBJN = 'obj.num'
COLPOSX = 'pos.x'
COLPOSY = 'pos.y'
COLIDX = 'IDX'
COLIDXDIFF = 'IDXdiff'
dmattek's avatar
dmattek committed
64
COLCL = 'cl'
dmattek's avatar
dmattek committed
65 66 67 68 69 70

# file names
FCSVOUTLIERS = 'outliers.csv'
FCSVTCCLEAN  = 'tCoursesSelected_clean.csv'
FPDFTCMEAN   = "tCoursesMeans.pdf"
FPDFTCSINGLE = "tCourses.pdf"
71
FPDFTCPSD    = 'tCoursesPsd.pdf'
dmattek's avatar
dmattek committed
72 73 74 75
FPDFBOXAUC   = 'boxplotAUC.pdf'
FPDFBOXTP    = 'boxplotTP.pdf'
FPDFSCATTER  = 'scatter.pdf'

dmattek's avatar
dmattek committed
76
# Colour definitions ----
dmattek's avatar
dmattek committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

102
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
103
l.col.pal = list(
dmattek's avatar
dmattek committed
104 105 106 107
  "Spectral" = 'Spectral',
  "Red-Yellow-Green" = 'RdYlGn',
  "Red-Yellow-Blue" = 'RdYlBu',
  "Greys" = "Greys",
dmattek's avatar
dmattek committed
108 109 110
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
dmattek's avatar
dmattek committed
111
  "Blues" = "Blues"
dmattek's avatar
dmattek committed
112 113
)

114 115 116 117 118 119 120 121 122 123
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
124 125 126 127 128 129 130 131 132 133 134
# list of palettes for the dendrogram
l.col.pal.dend.2 = list(
  "Colorblind 10" = 'Color Blind',
  "Tableau 10" = 'Tableau 10',
  "Tableau 20" = 'Tableau 20',
  "Classic 10" = "Classic 10",
  "Classic 20" = "Classic 20",
  "Traffic 9" = 'Traffic',
  "Seattle Grays 5" = 'Seattle Grays'
)

dmattek's avatar
dmattek committed
135
# Help text ----
dmattek's avatar
dmattek committed
136
helpText.server = c(
dmattek's avatar
dmattek committed
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  alDataFormat =  paste0(
    "<p>Switch between long and wide formats of input data. ",
    "TCI accepts CSV or compressed CSV files (gz or bz2).</p>",
    "<p><b>Long format</b> - a row is a single data point and consecutive time series are arranged vertically. ",
    "Data file should contain at least 3 columns separated with a comma:</p>",
    "<li>Identifier of a time series</li>",
    "<li>Time points</li>",
    "<li>A time-varying variable</li>",
    "<br>",
    "<p><b>Wide format</b> - a row is a time series with columns as time points.",
    "At least 3 columns shuold be present:</p>",
    "<li>First two columns in wide format should contain grouping and track IDs</li>",
    "<li>A column with a time point. Headers of columns with time points need to be numeric</li>"
  ),
  inDataGen1 =   paste0(
    "Generate 3 groups with 20 random synthetic time series. ",
    "Every time series contains 101 time points. ",
    "Track IDs are unique across entire dataset."
  ),
  chBtrajRem =   paste0(
    "Load CSV file with a column of track IDs for removal. ",
    "IDs should correspond to those used for plotting."
  ),
  chBstim =      paste0(
    "Load CSV file with stimulation pattern. Should contain 5 columns: ",
    "grouping, start and end time points of stimulation, start and end of y-position, dummy column with ID."
  ),
  chBtrajInter = paste0(
    "Interpolate missing measurements indicated with NAs in the data file. ",
    "In addition, interpolate a row that is completely missing from the data. ",
    "The interval of the time column must be provided to know which rows are missing."
  ),
  chBtrackUni =  paste0(
    "If the track ID in the uploaded dataset is unique only within a group (e.g. an experimental condition), ",
    "make it unique by prepending other columns to the track ID (typically a grouping column)."
  ),
dmattek's avatar
dmattek committed
173 174 175 176 177 178 179 180 181
  chBgroup    = "Select columns to group data according to treatment, condition, etc.",
  inSelMath   = "Select math operation to perform on a single or two measurement columns,",
  chBtimeTrim = "Trim time for further processing.",
  chBnorm     = "Divide measurements by the mean/median or calculate z-score with respect to selected time span.",
  rBnormMeth  = "Fold-change or z-score with respect to selected time span.",
  slNormRtMinMax = "Normalise with respect to this time span.",
  chBnormRobust  = "Calculate fold-change and z-score using the median and Median Absolute Deviation, instead of the mean and standard deviation.",
  chBnormGroup   = "Normalise to mean/median of selected time calculated globally, per group, or for individual time series.",
  downloadDataClean = "Download all time series after modifications in this panel.",
182 183
  alertNAsPresent              = "NAs present in the measurement column. Consider interpolation.",
  alertNAsPresentLong2WideConv = "Missing rows. Consider interpolation.",
dmattek's avatar
dmattek committed
184
  alertWideMissesNumericTime = "Non-numeric headers of time columns. Data in wide format should have numeric column headers corresponding to time points.",
dmattek's avatar
dmattek committed
185
  alertWideTooFewColumns     = "Insufficient columns. Data in wide format should contain at least 3 columns: grouping, track ID, and a single time point."
186 187
)

dmattek's avatar
dmattek committed
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
dmattek's avatar
dmattek committed
213 214 215 216 217
LOCcalcTrajCI = function(in.dt,
                         in.col.meas,
                         in.col.by = NULL,
                         in.type = c('normal', 'boot'),
                         ...) {
dmattek's avatar
dmattek committed
218 219 220
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
dmattek's avatar
dmattek committed
221 222 223 224 225
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by]
  else
    loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
  
  return(loc.dt)
dmattek's avatar
dmattek committed
226 227
}

228

229 230 231 232 233 234 235 236 237
#' Calculate standard error of the mean
#'
#' @param x Vector
#' @param na.rm Remove NAs; default = FALSE
#'
#' @return A scalar with the result
#' @export
#'
#' @examples
dmattek's avatar
dmattek committed
238 239
LOCstderr = function(x, na.rm = FALSE) {
  if (na.rm)
240 241
    x = na.omit(x)
  
dmattek's avatar
dmattek committed
242
  return(sqrt(var(x) / length(x)))
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
#' Calculate the power spectrum density for time-series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.id Name of the column with the unique series identifier
#' @param in.col.by Column names for grouping (default NULL - no grouping). PSD of individual trajectories will be averaged within a group.
#' @param in.method Name of the method for PSD estimation, must be one of c("pgram", "ar"). Default to "pgram*.
#' @param in.return.period Wheter to return densities though periods (1/frequencies) instead of frequencies.
#' @param ... Other paramters to pass to stats::spectrum()
#'
#' @return Datatable with columns: (frequency or period), spec (the density) and grouping column
#' @export
#' @import data.table
#'
#' @examples
LOCcalcPSD <- function(in.dt,
dmattek's avatar
dmattek committed
261 262 263 264 265 266 267
                       in.col.meas,
                       in.col.id,
                       in.col.by,
                       in.method = "pgram",
                       in.return.period = TRUE,
                       in.time.btwPoints = 1,
                       ...) {
268
  require(data.table)
269
  # Method "ar" returns $spec as matrix whereas "pgram" returns a vector, custom function to homogenze output format
dmattek's avatar
dmattek committed
270 271
  mySpectrum <- function(x, ...) {
    args_spec <- list(x = x, plot = FALSE)
272 273 274 275 276 277
    inargs <- list(...)
    args_spec[names(inargs)] <- inargs
    out <- do.call(spectrum, args_spec)
    out$spec <- as.vector(out$spec)
    return(out)
  }
dmattek's avatar
dmattek committed
278
  if (!in.method %in% c("pgram", "ar")) {
279 280
    stop('Method should be one of: c("pgram", "ar"')
  }
dmattek's avatar
dmattek committed
281 282
  dt_spec <-
    in.dt[, (mySpectrum(get(in.col.meas), plot = FALSE, method = in.method)[c("freq", "spec")]), by = in.col.id]
283 284 285
  dt_group <- in.dt[, .SD[1, get(in.col.by)], by = in.col.id]
  setnames(dt_group, "V1", in.col.by)
  dt_spec <- merge(dt_spec, dt_group, by = in.col.id)
dmattek's avatar
dmattek committed
286 287 288 289
  dt_agg <-
    dt_spec[, .(spec = mean(spec)), by = c(in.col.by, "freq")]
  if (in.return.period) {
    dt_agg[, period := 1 / freq]
290 291 292
    dt_agg[, freq := NULL]
    # Adjust period unit to go from frame unit  to time unit
    dt_agg[, period := period * in.time.btwPoints]
293
  } else {
dmattek's avatar
dmattek committed
294
    dt_agg[, freq := freq * (1 / in.time.btwPoints)]
295
    setnames(dt_agg, "freq", "frequency")
296 297 298 299 300
  }
  return(dt_agg)
}


301
#' Generate synthetic CellProfiler output with single-cell time series
dmattek's avatar
dmattek committed
302 303 304 305 306 307 308 309 310 311 312 313
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

dmattek's avatar
dmattek committed
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
LOCgenTraj <-
  function(in.ntpts = 60,
           in.ntracks = 10,
           in.nfov = 6,
           in.nwells = 1,
           in.addna = NULL,
           in.addout = NULL) {
    x.rand.1 = c(
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.5, 0.1),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3,   1, 0.2),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3,  2, 0.5)
    )
    x.rand.2 = c(
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.25, 0.1),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.5, 0.2),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 1, 0.2)
    )
    
    # add NA's for testing
    if (!is.null(in.addna)) {
      locTabLen = length(x.rand.1)
      x.rand.1[round(runif(in.addna) * locTabLen)] = NA
      x.rand.2[round(runif(in.addna) * locTabLen)] = NA
    }
    
    # add outliers for testing
    if (!is.null(in.addout)) {
      locTabLen = length(x.rand.1)
      x.rand.1[round(runif(in.addout) * locTabLen)] = 5
      x.rand.2[round(runif(in.addout) * locTabLen)] = 5
    }
    
    x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
    
    dt.nuc = data.table(
      well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
      group = rep(1:in.nfov, each = in.ntpts * in.ntracks),
      time = x.arg,
      y1 = x.rand.1,
      y2  = x.rand.2,
      posx = runif(
        in.ntpts * in.ntracks * in.nfov,
        min = 0,
        max = 1
      ),
      posy = runif(
        in.ntpts * in.ntracks * in.nfov,
        min = 0,
        max = 1
      ),
      id = rep(1:(in.ntracks * in.nfov), each = in.ntpts)
    )
    
    return(dt.nuc)
dmattek's avatar
dmattek committed
368
  }
dmattek's avatar
dmattek committed
369

dmattek's avatar
dmattek committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
LOCgenTraj2 <-
  function(n_perGroup = 20,
           sd_noise = 0.01,
           sampleFreq = 0.2,
           endTime = 50)
  {
    # Function definition ----------------------------------
    sim_expodecay_lagged_stim <-
      function (n,
                noise,
                interval.stim = 5,
                lambda = 0.2,
                freq = 0.2,
                end = 40)
      {
        require(data.table)
        tvec <- seq(0, end, by = freq)
        stim_time <- seq(interval.stim, end, interval.stim)
        stim_time_matrix <-
          matrix(stim_time, nrow = length(stim_time),
                 ncol = n)
        noise_matrix <- abs(replicate(n, rnorm(
          n = length(stim_time),
          mean = 0,
          sd = noise
        )))
        stim_time_matrix <- stim_time_matrix + noise_matrix
        trajs <- matrix(0, nrow = length(tvec), ncol = n)
        for (col in 1:ncol(stim_time_matrix)) {
          for (row in 1:nrow(stim_time_matrix)) {
            index <- which(tvec >= stim_time_matrix[row, col])[1]
            trajs[index, col] <- 1
          }
403
        }
dmattek's avatar
dmattek committed
404 405 406 407 408 409
        decrease_factor <- exp(-lambda * freq)
        for (col in 1:ncol(trajs)) {
          for (row in 2:nrow(trajs)) {
            if (trajs[row, col] != 1) {
              trajs[row, col] <- trajs[row - 1, col] * decrease_factor
            }
410 411
          }
        }
dmattek's avatar
dmattek committed
412 413 414 415 416
        trajs <- as.data.table(trajs)
        trajs <- cbind(seq(0, end, by = freq), trajs)
        colnames(trajs)[1] <- "Time"
        trajs <- melt(trajs, id.vars = "Time")
        return(trajs)
417
      }
dmattek's avatar
dmattek committed
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    
    
    # Dataset creation -----------------------------------------------
    dt1 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.4,
        freq = sampleFreq,
        end = endTime
      )
    dt2 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.1,
        freq = sampleFreq,
        end = endTime
      )
    dt3 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.4,
        freq = sampleFreq,
        end = endTime
      )
    dt3[, value := value / 3]
    
    dt1[, Group := "fastDecay"]
    dt2[, Group := "slowDecay"]
    dt3[, Group := "lowAmplitude"]
    
    dt <- rbindlist(list(dt1, dt2, dt3))
    dt[, ID := sprintf("%s_%02d", Group, as.integer(gsub('[A-Z]', '', variable)))]
    dt[, variable := NULL]
    dt[, Group := as.factor(Group)]
    
    dt[, value := value + runif(1, -0.1, 0.1), by = .(Group, ID)]
    noise_vec <- rnorm(n = nrow(dt), mean = 0, sd = sd_noise)
    dt[, value := value + noise_vec]
    
    setnames(dt, "value", "Meas")
    setcolorder(dt, c("Group", "ID", "Time", "Meas"))
    
    return(dt)
  }
468

dmattek's avatar
dmattek committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
dmattek's avatar
dmattek committed
491 492 493 494 495 496 497
                       in.meas.col,
                       in.rt.col = COLRT,
                       in.rt.min = 10,
                       in.rt.max = 20,
                       in.by.cols = NULL,
                       in.robust = TRUE,
                       in.type = 'z.score') {
dmattek's avatar
dmattek committed
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
# Cluster validation ----

#Customize factoextra functions to accept dissimilarity matrix from start. Otherwise can't use distance functions that are not in base R, like DTW.
# Inherit and adapt hcut function to take input from UI, used for fviz_clust

LOChcut <-
function(x,
         k = 2,
         isdiss = inherits(x, "dist"),
         hc_func = "hclust",
         hc_method = "average",
         hc_metric = "euclidean") {

    if (!inherits(x, "dist")) {
    stop("x must be a distance matrix")
  }
  return(
    factoextra::hcut(
      x = x,
      k = k,
      isdiss = TRUE,
      hc_func = hc_func,
      hc_method = hc_method,
      hc_metric = hc_metric
    )
  )
}

# Modified from factoextra::fviz_nbclust
# Allow (actually enforce) x to be a distance matrix; no GAP statistics for compatibility

LOCnbclust <-
  function (x,
            FUNcluster = LOChcut,
            method = c("silhouette", "wss"),
            k.max = 10,
            verbose = FALSE,
            barfill = "steelblue",
            barcolor = "steelblue",
            linecolor = "steelblue",
            print.summary = TRUE,
            ...)
  {
    set.seed(123)
    
    if (k.max < 2)
      stop("k.max must bet > = 2")
    
    method = match.arg(method)
    
    if (!inherits(x, c("dist")))
      stop("x should be an object of class dist")
    
    else if (is.null(FUNcluster))
      stop(
        "The argument FUNcluster is required. ",
        "Possible values are kmeans, pam, hcut, clara, ..."
      )
    
    else if (method %in% c("silhouette", "wss")) {
      diss <- x  # x IS ENFORCED TO BE A DISSIMILARITY MATRIX
      
      v <- rep(0, k.max)
      
      if (method == "silhouette") {
        loc.mainlab = "Optimal number of clusters from silhouette analysis"
        loc.ylab <- "Average silhouette width"
        for (i in 2:k.max) {
          clust <- FUNcluster(x, i, ...)
          v[i] <-
            factoextra:::.get_ave_sil_width(diss, clust$cluster)
        }
      }
      else if (method == "wss") {
        loc.mainlab = "Optimal number of clusters from within cluster sum of squares"
        
        loc.ylab <- "Total within cluster sum of squares"
        
        for (i in 1:k.max) {
          clust <- FUNcluster(x, i, ...)
          v[i] <- factoextra:::.get_withinSS(diss, clust$cluster)
        }
      }
      
      df <- data.frame(clusters = as.factor(1:k.max), y = v)
      
      p <- ggpubr::ggline(
        df,
        x = "clusters",
        y = "y",
        group = 1,
        color = linecolor,
        ylab = loc.ylab,
        xlab = "Number of clusters",
        main = loc.mainlab
      )
635

636 637 638
      return(p)
    }
  }
dmattek's avatar
Added:  
dmattek committed
639

640
# Clustering ----
dmattek's avatar
dmattek committed
641 642 643 644 645 646 647 648 649

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:  
dmattek committed
650 651
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
652
  loc.clAssign = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE, )
dmattek's avatar
dmattek committed
653 654 655 656
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
dmattek's avatar
dmattek committed
657 658 659
  loc.dt.clAssign = as.data.table(loc.clAssign, keep.rownames = T)
  setnames(loc.dt.clAssign, c(COLID, COLCL))
  
dmattek's avatar
dmattek committed
660
  
661 662
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
663
  return(loc.dt.clAssign)
dmattek's avatar
Added:  
dmattek committed
664 665
}

dmattek's avatar
dmattek committed
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
685 686
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
687 688 689 690 691
  return(loc.dt.cl)
}



dmattek's avatar
Added:  
dmattek committed
692 693 694 695 696 697 698
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
dmattek's avatar
dmattek committed
699 700 701 702 703
    data.table(
      cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
      cl.col = loc.col_labels
    )
  ))
dmattek's avatar
Added:  
dmattek committed
704 705
}

dmattek's avatar
dmattek committed
706
# Custom plotting functions ----
dmattek's avatar
dmattek committed
707

dmattek's avatar
dmattek committed
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
dmattek's avatar
dmattek committed
723 724 725 726
                          in.font.axis.text = 12,
                          in.font.axis.title = 12,
                          in.font.strip = 14,
                          in.font.legend = 12) {
dmattek's avatar
dmattek committed
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
dmattek's avatar
dmattek committed
742 743
      legend.key.width = unit(2, "lines")
    )
dmattek's avatar
dmattek committed
744 745 746 747
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
748 749
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
750 751 752 753 754
LOCrotatedAxisElementText = function(angle,
                                     position = 'x',
                                     size = 12) {
  angle     = angle[1]
  
dmattek's avatar
dmattek committed
755
  position  = position[1]
dmattek's avatar
dmattek committed
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  positions = list(
    x = 0,
    y = 90,
    top = 180,
    right = 270
  )
  if (!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]", paste(names(positions), collapse =
                                                           ", ")), call. = FALSE)
  if (!is.numeric(angle))
    stop("'angle' must be numeric", call. = FALSE)
  rads = (-angle - positions[[position]]) * pi / 180
  hjust = round((1 - sin(rads))) / 2
  vjust = round((1 + cos(rads))) / 2
  element_text(
    size = size,
    angle = angle,
    vjust = vjust,
    hjust = hjust
  )
dmattek's avatar
dmattek committed
776 777
}

778
# Plot individual time series
dmattek's avatar
dmattek committed
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
LOCplotTraj = function(dt.arg,
                       # input data table
                       x.arg,
                       # string with column name for x-axis
                       y.arg,
                       # string with column name for y-axis
                       group.arg,
                       # string with column name for grouping time series (typicaly cell ID)
                       facet.arg,
                       # string with column name for facetting
                       facet.ncol.arg = 2,
                       # default number of facet columns
                       facet.color.arg = NULL,
                       # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                       line.col.arg = NULL,
                       # string with column name for colouring time series (typically when individual time series are selected in UI)
                       xlab.arg = NULL,
                       # string with x-axis label
                       ylab.arg = NULL,
                       # string with y-axis label
                       plotlab.arg = NULL,
                       # string with plot label
                       dt.stim.arg = NULL,
                       # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
                       x.stim.arg = c('tstart', 'tend'),
                       # column names in stimulation dt with x and xend parameters
                       y.stim.arg = c('ystart', 'yend'),
                       # column names in stimulation dt with y and yend parameters
                       tfreq.arg = 1,
                       # unused
                       xlim.arg = NULL,
                       # limits of x-axis; for visualisation only, not trimmimng data
                       ylim.arg = NULL,
                       # limits of y-axis; for visualisation only, not trimmimng data
                       stim.bar.width.arg = 0.5,
                       # width of the stimulation line; plotted under time series
                       aux.label1 = NULL,
                       # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
                       aux.label2 = NULL,
                       aux.label3 = NULL,
                       stat.arg = c('', 'mean', 'CI', 'SE')) {
dmattek's avatar
Added:  
dmattek committed
820 821
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)
dmattek's avatar
dmattek committed
822
  
dmattek's avatar
Added:  
dmattek committed
823 824
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
825
  p.tmp = ggplot(dt.arg,
dmattek's avatar
dmattek committed
826 827 828 829 830 831
                 aes_string(
                   x = x.arg,
                   y = y.arg,
                   group = group.arg,
                   label = group.arg
                 ))
832 833 834 835
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
836
  
dmattek's avatar
dmattek committed
837 838
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
839 840
      geom_line(alpha = 0.25,
                size = 0.25)
dmattek's avatar
dmattek committed
841 842
  }
  else {
dmattek's avatar
dmattek committed
843 844 845 846 847 848 849 850 851 852 853 854 855
    p.tmp = p.tmp +
      geom_line(aes_string(colour = line.col.arg),
                alpha = 0.5,
                size = 0.5) +
      scale_color_manual(
        name = '',
        values = c(
          "FALSE" = rhg_cols[7],
          "TRUE" = rhg_cols[3],
          "SELECTED" = 'green',
          "NOT SEL" = rhg_cols[7]
        )
      )
dmattek's avatar
dmattek committed
856
  }
dmattek's avatar
dmattek committed
857
  
dmattek's avatar
Mod:  
dmattek committed
858 859 860 861 862 863 864 865
  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:  
dmattek committed
866 867
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:  
dmattek committed
868
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
869 870 871 872 873 874
      geom_hline(
        data = loc.dt.cl,
        colour = facet.color.arg,
        yintercept = loc.y.max,
        size = 4
      ) +
dmattek's avatar
Mod:  
dmattek committed
875 876 877
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
878
  
dmattek's avatar
Added:  
dmattek committed
879
  if ('mean' %in% loc.stat)
dmattek's avatar
dmattek committed
880
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
881 882
    stat_summary(
      aes_string(y = y.arg, group = 1),
dmattek's avatar
dmattek committed
883
      fun.y = mean,
dmattek's avatar
dmattek committed
884
      na.rm = T,
dmattek's avatar
Added:  
dmattek committed
885
      colour = 'red',
dmattek's avatar
dmattek committed
886 887 888 889
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:  
dmattek committed
890
    )
dmattek's avatar
dmattek committed
891
  
dmattek's avatar
Added:  
dmattek committed
892
  if ('CI' %in% loc.stat)
dmattek's avatar
dmattek committed
893
    p.tmp = p.tmp +
dmattek's avatar
Added:  
dmattek committed
894 895 896
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
dmattek's avatar
dmattek committed
897
      na.rm = T,
dmattek's avatar
Added:  
dmattek committed
898
      colour = 'red',
dmattek's avatar
Mod:  
dmattek committed
899
      alpha = 0.25,
dmattek's avatar
Added:  
dmattek committed
900 901 902 903 904
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
dmattek's avatar
dmattek committed
905
    p.tmp = p.tmp +
dmattek's avatar
Added:  
dmattek committed
906 907 908
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
dmattek's avatar
dmattek committed
909
      na.rm = T,
dmattek's avatar
Added:  
dmattek committed
910
      colour = 'red',
dmattek's avatar
Mod:  
dmattek committed
911
      alpha = 0.25,
dmattek's avatar
Added:  
dmattek committed
912 913 914 915 916 917
      geom = "ribbon",
      group = 1
    )
  
  
  
dmattek's avatar
dmattek committed
918
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
919 920 921
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
dmattek's avatar
dmattek committed
922
  
923 924 925
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
926 927 928 929 930 931 932 933 934 935 936 937 938
  if (!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(
      data = dt.stim.arg,
      aes_string(
        x = x.stim.arg[1],
        xend = x.stim.arg[2],
        y = y.stim.arg[1],
        yend = y.stim.arg[2],
        group = 'group'
      ),
      colour = rhg_cols[[3]],
      size = stim.bar.width.arg
    )
dmattek's avatar
dmattek committed
939 940
  }
  
dmattek's avatar
dmattek committed
941
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
dmattek's avatar
dmattek committed
942
  
dmattek's avatar
dmattek committed
943
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
944 945 946
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
dmattek's avatar
dmattek committed
947 948 949 950 951 952 953
    LOCggplotTheme(
      in.font.base = PLOTFONTBASE,
      in.font.axis.text = PLOTFONTAXISTEXT,
      in.font.axis.title = PLOTFONTAXISTITLE,
      in.font.strip = PLOTFONTFACETSTRIP,
      in.font.legend = PLOTFONTLEGEND
    ) +
954
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
955
  
dmattek's avatar
Mod:  
dmattek committed
956
  return(p.tmp)
dmattek's avatar
dmattek committed
957 958
}

959
# Plot average time series with CI together in one facet
dmattek's avatar
dmattek committed
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
LOCplotTrajRibbon = function(dt.arg,
                             # input data table
                             x.arg,
                             # string with column name for x-axis
                             y.arg,
                             # string with column name for y-axis
                             group.arg = NULL,
                             # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                             col.arg = NULL,
                             # colour pallette for individual time series
                             dt.stim.arg = NULL,
                             # data table with stimulation pattern
                             x.stim.arg = c('tstart', 'tend'),
                             # column names in stimulation dt with x and xend parameters
                             y.stim.arg = c('ystart', 'yend'),
                             # column names in stimulation dt with y and yend parameters
                             stim.bar.width.arg = 0.5,
                             xlim.arg = NULL,
                             # limits of x-axis; for visualisation only, not trimmimng data
                             ylim.arg = NULL,
                             # limits of y-axis; for visualisation only, not trimmimng data
                             ribbon.lohi.arg = c('Lower', 'Upper'),
                             # column names containing lower and upper bound for plotting the ribbon, e.g. for CI; set to NULL to avoid plotting the ribbon
                             ribbon.fill.arg = 'grey50',
                             ribbon.alpha.arg = 0.5,
                             xlab.arg = NULL,
                             ylab.arg = NULL,
                             plotlab.arg = NULL) {
988 989 990
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg))
  
  if (!is.null(ribbon.lohi.arg))
dmattek's avatar
dmattek committed
991 992 993 994 995 996
    p.tmp = p.tmp +
      geom_ribbon(
        aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
        fill = ribbon.fill.arg,
        alpha = ribbon.alpha.arg
      )
997 998
  
  p.tmp = p.tmp + geom_line(aes_string(y = y.arg, colour = group.arg))
999
  
dmattek's avatar
dmattek committed
1000
  
1001 1002 1003
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
  if (!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(
      data = dt.stim.arg,
      aes_string(
        x = x.stim.arg[1],
        xend = x.stim.arg[2],
        y = y.stim.arg[1],
        yend = y.stim.arg[2]
      ),
      colour = rhg_cols[[3]],
      size = stim.bar.width.arg,
      group = 1
    )
1017
  }
dmattek's avatar
dmattek committed
1018
  
dmattek's avatar
dmattek committed
1019
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
1037 1038
}

1039
# Plot average power spectrum density per facet
dmattek's avatar
dmattek committed
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
LOCplotPSD <- function(dt.arg,
                       # input data table
                       x.arg,
                       # string with column name for x-axis
                       y.arg,
                       # string with column name for y-axis
                       group.arg = NULL,
                       # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                       xlab.arg = x.arg,
                       ylab.arg = y.arg,
                       facet.color.arg = NULL) {
majpark21's avatar
majpark21 committed
1051
  require(ggplot2)
dmattek's avatar
dmattek committed
1052 1053 1054 1055
  if (length(setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))) > 0) {
    stop(paste("Missing columns in dt.arg: ", setdiff(
      c(x.arg, y.arg, group.arg), colnames(dt.arg)
    )))
majpark21's avatar
majpark21 committed
1056
  }
dmattek's avatar
dmattek committed
1057
  p.tmp <- ggplot(dt.arg, aes_string(x = x.arg, y = y.arg)) +
majpark21's avatar
majpark21 committed
1058
    geom_line() +
dmattek's avatar
dmattek committed
1059 1060 1061
    geom_rug(sides = "b",
             alpha = 1,
             color = "lightblue") +
majpark21's avatar
majpark21 committed
1062 1063
    facet_wrap(group.arg) +
    labs(x = xlab.arg, y = ylab.arg)
1064
  
1065 1066 1067 1068 1069 1070 1071
  if (!is.null(facet.color.arg)) {
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', group.arg)
    
    # adjust facet.color.arg to plot
    
1072
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
1073 1074 1075 1076 1077 1078
      geom_hline(
        data = loc.dt.cl,
        colour = facet.color.arg,
        yintercept = loc.y.max,
        size = 4
      ) +
1079 1080
      scale_colour_manual(values = facet.color.arg,
                          name = '')
1081 1082
  }
  
majpark21's avatar
majpark21 committed
1083 1084
  return(p.tmp)
}
1085

dmattek's avatar
dmattek committed
1086 1087 1088
#' Plot a scatter plot with an optional linear regression
#'
#' @param dt.arg input of data.table with 2 columns with x and y coordinates
dmattek's avatar
dmattek committed
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
#' @param facet.arg
#' @param facet.ncol.arg
#' @param xlab.arg
#' @param ylab.arg
#' @param plotlab.arg
#' @param alpha.arg
#' @param trend.arg
#' @param ci.arg

LOCggplotScat = function(dt.arg,
                         facet.arg = NULL,
                         facet.ncol.arg = 2,
                         xlab.arg = NULL,
                         ylab.arg = NULL,
                         plotlab.arg = NULL,
                         alpha.arg = 1,
                         trend.arg = T,
                         ci.arg = 0.95) {
dmattek's avatar
dmattek committed
1107
  p.tmp = ggplot(dt.arg, aes(x = x, y = y, label = id)) +
dmattek's avatar
dmattek committed
1108
    geom_point(alpha = alpha.arg)
dmattek's avatar
dmattek committed
1109
  
dmattek's avatar
dmattek committed
1110
  if (trend.arg) {
dmattek's avatar
dmattek committed
1111 1112
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
1113
        method = "lm",
dmattek's avatar
dmattek committed
1114
        fullrange = FALSE,
dmattek's avatar
dmattek committed
1115
        level = ci.arg,
dmattek's avatar
dmattek committed
1116 1117 1118
        colour = 'blue'
      )
  }
dmattek's avatar
dmattek committed
1119
  
dmattek's avatar
dmattek committed
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
1140 1141 1142 1143 1144 1145 1146
    LOCggplotTheme(
      in.font.base = PLOTFONTBASE,
      in.font.axis.text = PLOTFONTAXISTEXT,
      in.font.axis.title = PLOTFONTAXISTITLE,
      in.font.strip = PLOTFONTFACETSTRIP,
      in.font.legend = PLOTFONTLEGEND
    ) +
1147
    theme(legend.position = "none")
dmattek's avatar
dmattek committed
1148
  
dmattek's avatar
dmattek committed
1149 1150
  return(p.tmp)
}
dmattek's avatar
dmattek committed
1151

1152

dmattek's avatar
dmattek committed
1153
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
dmattek committed
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                           dend.arg,
                           palette.arg,
                           palette.rev.arg = TRUE,
                           dend.show.arg = TRUE,
                           key.show.arg = TRUE,
                           margin.x.arg = 5,
                           margin.y.arg = 20,
                           nacol.arg = 0.5,
                           colCol.arg = NULL,
                           labCol.arg = NULL,
                           font.row.arg = 1,
                           font.col.arg = 1,
                           breaks.arg = NULL,
                           title.arg = 'Clustering') {
1168 1169
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:  
dmattek committed
1170 1171
  if (palette.rev.arg)
    my_palette <-
dmattek's avatar
dmattek committed
1172
      rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:  
dmattek committed
1173 1174
  else
    my_palette <-
dmattek's avatar
dmattek committed
1175
      colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:  
dmattek committed
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
1211 1212
    main = title.arg,
    symbreaks = FALSE,
1213
    symkey = FALSE,
dmattek's avatar
dmattek committed
1214 1215 1216 1217
    breaks = if (is.null(breaks.arg))
      NULL
    else
      seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks + 1)
dmattek's avatar
Mod:  
dmattek committed
1218 1219 1220 1221
  )
  
  return(loc.p)
}