server.R 31.3 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
dmattek's avatar
dmattek committed
10 11
library(shinyBS) # for tooltips
library(shinycssloaders) # for loader animations
dmattek's avatar
dmattek committed
12 13
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
15 16 17
library(plotly) # interactive plot
library(DT) # interactive tables

dmattek's avatar
dmattek committed
18
library(dendextend) # for color_branches
19
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
20 21
library(RColorBrewer)
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
22
library(ggthemes) # nice colour palettes
23 24

library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
25
library(dtw) # for dynamic time warping
dmattek's avatar
dmattek committed
26
library(factoextra) # extract and visualize the output of multivariate data analyses 
dmattek's avatar
dmattek committed
27
library(imputeTS) # for interpolating NAs
28 29
library(robust) # for robust linear regression
library(MASS)
dmattek's avatar
dmattek committed
30 31
library(pracma) # for trapz used in AUC calculation

32

dmattek's avatar
dmattek committed
33

34
# Global parameters ----
dmattek's avatar
dmattek committed
35
# change to increase the limit of the upload file size
dmattek's avatar
dmattek committed
36
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
37

dmattek's avatar
dmattek committed
38 39 40 41 42
# Important when joining, grouping or ordering numeric (i.e. double, POSIXct) columns.
# https://stackoverflow.com/questions/58230619/xy-join-of-keyed-data-table-fails-when-key-on-numeric-column-and-data-fread-fr
setNumericRounding(2)


dmattek's avatar
dmattek committed
43 44 45
# colour of loader spinner (shinycssloaders)
options(spinner.color="#00A8AA")

dmattek's avatar
dmattek committed
46
# Server logic ----
47
shinyServer(function(input, output, session) {
48
  useShinyjs()
dmattek's avatar
dmattek committed
49
  
50
  # This is only set at session start
dmattek's avatar
dmattek committed
51
  # We use this as a way to determine which input was
52 53
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
54 55 56
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
57 58
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
59
  )
dmattek's avatar
dmattek committed
60 61 62 63 64 65 66 67 68

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
69
  
dmattek's avatar
dmattek committed
70
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
71
  
dmattek's avatar
dmattek committed
72
  # Generate random dataset
73
  dataGen1 <- eventReactive(input$inDataGen1, {
74
    if (DEB)
75
      cat("server:dataGen1\n")
76
    
dmattek's avatar
dmattek committed
77
    return(LOCgenTraj2(n_perGroup = 20, sd_noise = 0.01, sampleFreq = 0.4, endTime = 40))
78 79
  })
  
dmattek's avatar
dmattek committed
80
  # Load main data file
81
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
82
    if (DEB)
83
      cat("server:dataLoadNuc\n")
84

85 86 87 88 89 90 91
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
92
      return(fread(locFilePath, strip.white = T))
93 94 95
    }
  })
  
dmattek's avatar
dmattek committed
96 97 98 99
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
100

dmattek's avatar
dmattek committed
101
  # Load data with trajectories to remove
102
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
103
    if (DEB)
104
      cat(file = stdout(), "server:dataLoadTrajRem\n")
105
    
106 107 108 109 110 111 112 113 114 115
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
116
  
dmattek's avatar
dmattek committed
117
  # Load data with stimulation pattern
118
  dataLoadStim <- eventReactive(input$inButLoadStim, {
119
    if (DEB)
120
      cat(file = stdout(), "server:dataLoadStim\n")
121
    
122 123 124 125 126 127 128 129 130 131 132 133
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
dmattek committed
134 135
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
136
    if (DEB)
137
      cat(file = stdout(), 'server:uiFileLoadTrajRem\n')
dmattek's avatar
dmattek committed
138 139 140 141
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
dmattek's avatar
dmattek committed
142
        "Select file and click Load Data",
dmattek's avatar
dmattek committed
143 144 145 146 147
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
148
    if (DEB)
149
      cat(file = stdout(), 'server:uiButLoadTrajRem\n')
dmattek's avatar
dmattek committed
150 151 152 153 154
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

155 156
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
157
    if (DEB)
158
      cat(file = stdout(), 'server:uiFileLoadStim\n')
dmattek's avatar
dmattek committed
159
    
160 161 162
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
dmattek's avatar
dmattek committed
163
        "Select file and click Load Data",
164 165 166 167 168
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
169
    if (DEB)
170
      cat(file = stdout(), 'server:uiButLoadStim\n')
dmattek's avatar
dmattek committed
171
    
172 173
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
dmattek committed
174 175
  })
  
176

dmattek's avatar
dmattek committed
177
  
dmattek's avatar
dmattek committed
178
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
179
  output$varSelTrackLabel = renderUI({
180
    if (DEB)
181
      cat(file = stdout(), 'server:varSelTrackLabel\n')
182
    
dmattek's avatar
dmattek committed
183
    locCols = getDataNucCols()
184
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
185 186 187
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
188
      'Track ID column',
dmattek's avatar
dmattek committed
189 190 191 192 193 194 195
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
196
    if (DEB)
197
      cat(file = stdout(), 'server:varSelTime\n')
198
    
dmattek's avatar
dmattek committed
199
    locCols = getDataNucCols()
200
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
201 202 203
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
204
      'Time column',
dmattek's avatar
dmattek committed
205 206 207 208 209
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
210 211

  output$varSelTimeFreq = renderUI({
212
    if (DEB)
213
      cat(file = stdout(), 'server:varSelTimeFreq\n')
214
    
215 216 217
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
dmattek's avatar
dmattek committed
218
        'Interval between 2 time points',
219 220 221 222 223 224
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
225
  })
dmattek's avatar
dmattek committed
226
  
dmattek's avatar
dmattek committed
227
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
228
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
229 230
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
231
  output$varSelGroup = renderUI({
232
    if (DEB)
233
      cat(file = stdout(), 'server:varSelGroup\n')
dmattek's avatar
dmattek committed
234
    
dmattek's avatar
dmattek committed
235 236 237 238 239
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
240
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
241 242

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
243 244
        selectInput(
          'inSelGroup',
dmattek's avatar
dmattek committed
245
          'Grouping columns',
dmattek's avatar
dmattek committed
246 247 248 249 250
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
251 252 253 254
      }
    }
  })
  
255 256
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
257
  output$varSelSite = renderUI({
258
    if (DEB)
259
      cat(file = stdout(), 'server:varSelSite\n')
dmattek's avatar
dmattek committed
260
    
261
    if (input$chBtrackUni) {
dmattek's avatar
dmattek committed
262
      locCols = getDataNucCols()
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
263
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov|(G|g)roup', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
264 265 266
      
      selectInput(
        'inSelSite',
dmattek's avatar
dmattek committed
267
        'Prepend track ID with',
dmattek's avatar
dmattek committed
268 269
        locCols,
        width = '100%',
270 271
        selected = locColSel,
        multiple = T
dmattek's avatar
dmattek committed
272 273
      )
    }
dmattek's avatar
dmattek committed
274 275 276 277
  })
  
  
  output$varSelMeas1 = renderUI({
278
    if (DEB)
279
      cat(file = stdout(), 'server:varSelMeas1\n')
dmattek's avatar
dmattek committed
280 281 282
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
283
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
284

dmattek's avatar
dmattek committed
285 286
      selectInput(
        'inSelMeas1',
dmattek's avatar
dmattek committed
287
        '1st measurement column',
dmattek's avatar
dmattek committed
288 289 290 291 292 293 294 295 296
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
297
    if (DEB)
298
      cat(file = stdout(), 'server:varSelMeas2\n')
299
    
dmattek's avatar
dmattek committed
300 301 302 303
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
304
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
305

dmattek's avatar
dmattek committed
306 307
      selectInput(
        'inSelMeas2',
dmattek's avatar
dmattek committed
308
        '2nd measurement column',
dmattek's avatar
dmattek committed
309 310 311 312 313 314 315
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
316
  # UI-side-panel-trim x-axis (time) ----
317
  
dmattek's avatar
dmattek committed
318
  output$uiSlTimeTrim = renderUI({
319
    if (DEB)
320
      cat(file = stdout(), 'server:uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
321 322 323 324 325 326 327 328 329 330 331 332
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
dmattek's avatar
dmattek committed
333
        label = 'Use time range',
dmattek's avatar
dmattek committed
334 335 336 337 338 339 340
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
341 342 343 344 345 346 347
  }) 
  
  # Return the value of slider for trimming time; 
  # output delayed by MILLIS
  returnValSlTimeTrim = reactive({
    return(input$slTimeTrim)
  }) %>% debounce(MILLIS)
dmattek's avatar
dmattek committed
348
  
dmattek's avatar
dmattek committed
349
  # UI-side-panel-normalization ----
350 351 352 353
  
  # select normalisation method
  # - fold-change calculates fold change with respect to the mean
  # - z-score calculates z-score of the selected regione of the time series
dmattek's avatar
dmattek committed
354
  output$uiChBnorm = renderUI({
355
    if (DEB)
356
      cat(file = stdout(), 'server:uiChBnorm\n')
dmattek's avatar
dmattek committed
357 358
    
    if (input$chBnorm) {
359
      tagList(
dmattek's avatar
dmattek committed
360 361 362
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
363 364 365
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score'),
        width = "40%"
      ),
dmattek's avatar
dmattek committed
366
      bsTooltip('rBnormMeth', helpText.server[["rBnormMeth"]], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
367 368 369 370
      )
    }
  })
  
371
  # select the region of the time series for normalisation
dmattek's avatar
dmattek committed
372
  output$uiSlNorm = renderUI({
373
    if (DEB)
374
      cat(file = stdout(), 'server:uiSlNorm\n')
dmattek's avatar
dmattek committed
375 376 377 378 379 380 381 382 383 384
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
385
      tagList(
dmattek's avatar
dmattek committed
386 387
      sliderInput(
        'slNormRtMinMax',
388
        label = 'Time span',
dmattek's avatar
dmattek committed
389 390
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
391 392
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
393
      ),
dmattek's avatar
dmattek committed
394
      bsTooltip('slNormRtMinMax', helpText.server[["slNormRtMinMax"]], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
395 396 397 398
      )
    }
  })
  
399 400 401 402 403 404 405
  # Return the value of slider for normalisation time; 
  # output delayed by MILLIS
  returnValSlNormRtMinMax = reactive({
    return(input$slNormRtMinMax)
  }) %>% debounce(MILLIS)
  
  
406
  # use robust stats (median instead of mean, mad instead of sd)
dmattek's avatar
dmattek committed
407
  output$uiChBnormRobust = renderUI({
408
    if (DEB)
409
      cat(file = stdout(), 'server:uiChBnormRobust\n')
dmattek's avatar
dmattek committed
410 411
    
    if (input$chBnorm) {
412
      tagList(
dmattek's avatar
dmattek committed
413 414
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
415 416
                    FALSE, 
                    width = "40%"),
dmattek's avatar
dmattek committed
417
      bsTooltip('chBnormRobust', helpText.server[["chBnormRobust"]], placement = "top", trigger = "hover", options = NULL)
418
      )
dmattek's avatar
dmattek committed
419 420 421
    }
  })
  
422
  # choose whether normalisation should be calculated for the entire dataset, group, or trajectory
dmattek's avatar
dmattek committed
423
  output$uiChBnormGroup = renderUI({
424
    if (DEB)
425
      cat(file = stdout(), 'server:uiChBnormGroup\n')
dmattek's avatar
dmattek committed
426 427
    
    if (input$chBnorm) {
428
      tagList(
dmattek's avatar
dmattek committed
429
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
430
                   label = 'Normalisation grouping',
431 432
                   choices = list('Entire dataset' = 'none', 'Per group' = 'group', 'Per trajectory' = 'id'), 
                   width = "40%"),
dmattek's avatar
dmattek committed
433
      bsTooltip('chBnormGroup', helpText.server[["chBnormGroup"]], placement = "top", trigger = "hover", options = NULL)
434
      )
dmattek's avatar
dmattek committed
435 436 437 438
    }
  })
  
  
439 440 441 442 443
  # Pop-overs ----
  addPopover(session, 
             "alDataFormat",
             title = "Data format",
             content = helpText.server[["alDataFormat"]],
dmattek's avatar
dmattek committed
444
             trigger = "click")
dmattek's avatar
dmattek committed
445
  
dmattek's avatar
dmattek committed
446

dmattek's avatar
dmattek committed
447
  # Processing-data ----
dmattek's avatar
dmattek committed
448
  
449
  # Obtain data either from an upload or by generating a synthetic dataset
450 451 452 453 454 455 456 457 458 459 460 461
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
462
    # Don't wrap around if(DEB) !!!
463
    cat(
464
      "server:dataInBoth\n   inGen1: ",
465
      locInGen1,
466
      "      prev=",
467
      isolate(counter$dataGen1),
468
      "\n   inDataNuc: ",
469 470 471 472 473 474 475 476 477 478
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
479
    # isolate the checks of the counter reactiveValues
480 481
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
482
      cat("server:dataInBoth if inDataGen1\n")
483 484 485 486
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
487
      cat("server:dataInBoth if inDataLoadNuc\n")
488
      dm = dataLoadNuc()
489 490 491
      
      # convert to long format if radio box set to "wide"
      # the input data in long format should contain:
492
      # - the first row with a header: group, track id, time points as columns with numeric header
493 494
      # - consecutive rows with time series, where columns are time points
      if (input$inRbutLongWide == 1) {
495 496 497 498 499 500 501 502 503 504 505 506
        print(length(names(dm)))
        
        # data in wide format requires at least 3 columns: grouping, track id, 1 time point
        if (length(names(dm)) < 3) {
          dm = NULL
          
          createAlert(session, "alertAnchorSidePanelDataFormat", "alertWideTooFewColumns", 
                      title = "Error",
                      content = helpText.server[["alertWideTooFewColumns"]], 
                      append = FALSE,
                      style = "danger")
          
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        } else {
          closeAlert(session, "alertWideTooFewColumns")

          # obtain column headers from the wide format data
          # headers for grouping and track id columns
          loc.cols.idvars = names(dm)[1:2]
          
          # headers for time columns
          loc.cols.time = names(dm)[c(-1, -2)]
          
          # check if time columns are numeric
          # from https://stackoverflow.com/a/21154566/1898713
          loc.cols.time.numres = grepl("[-]?[0-9]+[.]?[0-9]*|[-]?[0-9]+[L]?|[-]?[0-9]+[.]?[0-9]*[eE][0-9]+", loc.cols.time)
          
          # melt the table only if time columns are numeric
          if (sum(!loc.cols.time.numres) == 0) {
            closeAlert(session, "alertWideMissesNumericTime")
            
            # long to wide
            dm = melt(dm, id.vars = loc.cols.idvars, variable.name = COLRT, value.name = COLY)
            
            # convert column names with time points to a number
            dm[, (COLRT) := as.numeric(levels(get(COLRT)))[get(COLRT)]]
            
          } else {
            dm = NULL

            createAlert(session, "alertAnchorSidePanelDataFormat", "alertWideMissesNumericTime", title = "Error",
                        content = helpText.server[["alertWideMissesNumericTime"]], 
                        append = FALSE,
                        style = "danger")
          }
        }
541 542
      }
      
543 544 545
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
546
      cat("server:dataInBoth else\n")
547 548
      dm = NULL
    }
549
    
550 551 552
    return(dm)
  })
  
553 554 555
  # Return a dt with mods depending on UI options::
  # - an added column with unique track object label created from the existing track id and prepended with columns chosen in the UI
  # - removed track IDs based on a separate file uploaded; the file should contain a single column with a header and unique track IDs
556
  dataMod <- reactive({
557
    if (DEB)
558
      cat(file = stdout(), 'server:dataMod\n')
559
    
560 561
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
562
    if (is.null(loc.dt))
563 564
      return(NULL)
    
565
    if (input$chBtrackUni) {
566
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
567
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
dmattek committed
568
    } else {
569
      # Leave track ID provided in the loaded dataset; has to be unique
570
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
dmattek committed
571 572
    }
    
dmattek's avatar
dmattek committed
573 574
    # remove trajectories based on uploaded csv
    if (input$chBtrajRem) {
575
      if (DEB)
576
        cat(file = stdout(), 'server:dataMod: trajRem not NULL\n')
dmattek's avatar
dmattek committed
577 578
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
579
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
dmattek committed
580 581
    }
    
582 583 584 585 586
    return(loc.dt)
  })
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
587
  #    realtime - selected from input
dmattek's avatar
dmattek committed
588
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
589
  #               (can be a single column or result of an operation on two cols)
590 591
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
592 593
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
594 595 596 597
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
598
  dataLong <- reactive({
599
    if (DEB)
600
      cat(file = stdout(), 'server:dataLong\n')
601 602
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
603
    if (is.null(loc.dt))
604 605
      return(NULL)
    
606
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
607
    if (input$inSelMath == '')
608 609 610 611 612 613
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
614
    # create expression for 'group' column
615 616
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
617 618 619 620 621 622 623 624 625 626 627
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
628
    
dmattek's avatar
dmattek committed
629 630

    # column name with time
631 632
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
633 634
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
635
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
636
    
dmattek's avatar
dmattek committed
637 638
    
    # Find column names with position
639
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
640
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
dmattek committed
641
    
642
    if (DEB)
643
      cat('server:dataLong:\n   Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
644 645
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
dmattek committed
646 647 648 649
      locPos = TRUE
    else
      locPos = FALSE
    
650 651 652 653
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
654
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
655
    #cat('dataLong::loc.s.objnum ', loc.s.objnum, '\n')
656 657 658 659
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
660
      loc.s.objnum = loc.s.objnum[1]
661
      locObjNum = TRUE
dmattek's avatar
dmattek committed
662
    }
663 664
    
    
665 666
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
dmattek's avatar
dmattek committed
667
    if (sum(names(loc.dt) %in% COLIN) > 0)
668 669 670 671 672 673
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
dmattek's avatar
dmattek committed
674 675 676 677
    s.colexpr = paste0('.(',  COLY, ' = ', loc.s.y,
                       ', ', COLID, ' = ', COLIDUNI, 
                       ', ', COLGR, ' = ', loc.s.gr,
                       ', ', COLRT, ' = ', loc.s.rt)
678 679
    
    # account for the presence of 'mid.in' column in uploaded data
dmattek's avatar
dmattek committed
680
    # future: choose this column in UI
681 682
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
683
                         ',', COLIN, ' = ', COLIN)
684 685 686 687
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
688 689
                         ', ', COLPOSX, '= ', loc.s.pos.x,
                         ', ', COLPOSY, '= ', loc.s.pos.y)
690 691 692 693
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
694
                         ', ', COLOBJN, ' = ', loc.s.objnum)
695 696 697 698 699 700 701
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
702 703 704 705 706
    # Convert track ID to a factor.
    # This is necessary for, e.g. merging data with cluster assignments.
    # If input dataset has track ID as a number, such a merge would fail.
    loc.out[, (COLID) := as.factor(get(COLID))]
    
707 708 709 710 711 712
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
dmattek's avatar
dmattek committed
713
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', get(COLIN))]
714
      else
dmattek's avatar
Mod:  
dmattek committed
715
        # add a column with status of track selection
dmattek's avatar
dmattek committed
716
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
717
    }
718
      
dmattek's avatar
dmattek committed
719

720
    ## Interpolate missing data and NA data points
721
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
722
    # Tracks are interpolated only within first and last time points of every track id
723 724
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
725
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
726
    
727 728
    # Check for explicit NA's in the measurement columns
    # Has to be here (and not in dataMod()) because we need to know the name of the measurement column (COLY)
dmattek's avatar
dmattek committed
729 730 731 732 733 734 735 736
    if (sum(is.na(loc.out[[COLY]])))
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresent", title = "Warning",
                  content = helpText.server[["alertNAsPresent"]], 
                  append = FALSE,
                  style = "warning")
    else
      closeAlert(session, "alertNAsPresent")
    
737
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
738

739
    if (input$chBtrajInter) {
dmattek's avatar
dmattek committed
740 741 742 743 744 745
      # here we fill missing rows with NA's
      loc.out = loc.out[setkeyv(loc.out[, 
                                        .(seq(min(get(COLRT), na.rm = T), 
                                              max(get(COLRT), na.rm = T), 
                                              input$inSelTimeFreq)), 
                                        by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
746 747
      
      # x-check: print all rows with NA's
748
      if (DEB) {
749
        cat(file = stdout(), 'server:dataLong: Rows with NAs:\n')
750 751
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
752 753 754 755
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
756
        s.cols = c(COLY, COLPOSX, COLPOSY)
757
      else
dmattek's avatar
dmattek committed
758
        s.cols = c(COLY)
759
      
760 761 762 763 764 765 766 767
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

dmattek's avatar
dmattek committed
768
        loc.out[, (col) := na_interpolation(get(col)), by = c(COLID)]        
769 770 771
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
772 773 774 775 776 777 778 779 780 781 782 783 784 785
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
786
    
787
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
788
    if(input$chBtimeTrim) {
789
      loc.out = loc.out[get(COLRT) >= returnValSlTimeTrim()[[1]] & get(COLRT) <= returnValSlTimeTrim()[[2]] ]
dmattek's avatar
dmattek committed
790
    }
dmattek's avatar
dmattek committed
791
    
792
    ## Normalization
dmattek's avatar
dmattek committed
793
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
794
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
795
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
796
        in.dt = loc.out,
dmattek's avatar
dmattek committed
797 798
        in.meas.col = COLY,
        in.rt.col = COLRT,
799 800
        in.rt.min = returnValSlNormRtMinMax()[1],
        in.rt.max = returnValSlNormRtMinMax()[2],
dmattek's avatar
dmattek committed
801 802 803 804 805
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
806
      # Column with normalized data is renamed to the original name
807
      # Further code assumes column name y produced by dataLong
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
808 809
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
810
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
811 812 813
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
814 815
  })
  
dmattek's avatar
dmattek committed
816
  
817 818 819 820 821
  # Prepare data in wide format, ready for distance calculation in clustering
  # Return a matrix with:
  # - time series as rows
  # - time points as columns
  dataWide <- reactive({
822
    if (DEB)  
823
      cat(file = stdout(), 'server:dataWide\n')
dmattek's avatar
dmattek committed
824
    
825
    loc.dt = dataLongNoOut()
dmattek's avatar
dmattek committed
826 827 828
    if (is.null(loc.dt))
      return(NULL)
    
829 830 831 832
    # convert from long to wide format
    loc.dt.wide = dcast(loc.dt, 
                    reformulate(response = COLID, termlabels = COLRT), 
                    value.var = COLY)
dmattek's avatar
dmattek committed
833
    
834 835
    # store row names for later
    loc.rownames = loc.dt.wide[[COLID]]
dmattek's avatar
Mod:  
dmattek committed
836
    
837 838
    # omit first column that contains row names
    loc.m.out = as.matrix(loc.dt.wide[, -1])
dmattek's avatar
dmattek committed
839
    
840 841
    # assign row names to the matrix
    rownames(loc.m.out) = loc.rownames
dmattek's avatar
dmattek committed
842
    
843 844 845 846 847 848 849 850 851 852 853 854
    # Check for missing time points
    # Missing rows in the long format give rise to NAs during dcast
    # Here, we are not checking for explicit NAs in COLY column
    if ((sum(is.na(loc.dt[[COLY]])) == 0) & (sum(is.na(loc.dt.wide)) > 0)) {
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresentLong2WideConv", title = "Warning",
                  content = helpText.server[["alertNAsPresentLong2WideConv"]], 
                  append = FALSE,
                  style = "warning")
    } else {
      closeAlert(session, "alertNAsPresentLong2WideConv")
    }
    
855
    return(loc.m.out)
dmattek's avatar
Mod:  
dmattek committed
856
  }) 
857
  
dmattek's avatar
dmattek committed
858
  
859 860 861
  # Prepare data with stimulation pattern
  # This dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  dataStim <- reactive({
862
    if (DEB)  
863
      cat(file = stdout(), 'server:dataStim\n')
864 865
    
    if (input$chBstim) {
866
      if (DEB)  
867
        cat(file = stdout(), 'server:dataStim: stim not NULL\n')
868 869 870 871
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
872
      if (DEB)  
873
        cat(file = stdout(), 'server:dataStim: stim is NULL\n')
874
      
875 876 877 878
      return(NULL)
    }
  })
  
879 880 881 882 883 884 885 886 887 888 889 890 891
  # Return all unique track object labels (created in dataMod)
  # Used to display track IDs in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    if (DEB)
      cat(file = stdout(), 'server:getDataTrackObjLabUni\n')
    
    loc.dt = dataMod()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[COLIDUNI]]))
  })
dmattek's avatar
dmattek committed
892
  
893 894 895 896 897 898 899
  
  # Return all unique time points (real time)
  # Used to set limits of sliders for trimming time and for normalisation
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
  getDataTpts <- reactive({
    if (DEB)
      cat(file = stdout(), 'server:getDataTpts\n')
dmattek's avatar
dmattek committed
900
    
901
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
902
    
903 904 905 906 907 908 909 910 911 912 913 914
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
  })
  
  
  # Return column names of the main dt
  # Used to fill UI input fields with a choice of column names
  getDataNucCols <- reactive({
    if (DEB)
      cat(file = stdout(), 'server:getDataNucCols: in\n')
dmattek's avatar
dmattek committed
915
    
916 917 918 919 920 921
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
dmattek's avatar
dmattek committed
922 923
  })
  
924 925 926 927 928 929 930
  # Unfinished f-n!
  # prepare y-axis label in time series plots, depending on UI setting
  createYaxisLabel = reactive({
    locLabel = input$inSelMeas1
    
    return(locLabel)
  })
dmattek's avatar
dmattek committed
931
  
dmattek's avatar
dmattek committed
932 933 934
  # Plotting-trajectories ----

  # UI for selecting trajectories
935
  # The output data table of dataLong is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
936
  output$varSelHighlight = renderUI({
937
    if (DEB)  
938
      cat(file = stdout(), 'server:varSelHighlight\n')
dmattek's avatar
dmattek committed
939
    
dmattek's avatar
dmattek committed
940 941 942
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
943
    
dmattek's avatar
dmattek committed
944
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
945
    if (!is.null(loc.v)) {
946
      selectInput(
dmattek's avatar
dmattek committed
947
        'inSelHighlight',
948
        'Select one or more trajectories:',
dmattek's avatar
dmattek committed
949
        loc.v,
950
        width = '100%',
dmattek's avatar
dmattek committed
951
        multiple = TRUE
952
      )
dmattek's avatar
dmattek committed
953 954 955
    }
  })
  
956 957 958 959 960 961 962 963 964 965 966
  # Modules within main window ----
  
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = FCSVTCCLEAN,
    content = function(file) {
      write.csv(dataLongNoOut(), file, row.names = FALSE)
    }
  )

dmattek's avatar
dmattek committed
967
  # Taking out outliers 
968
  dataLongNoOut = callModule(modSelOutliers, 'returnOutlierIDs', dataLong)
dmattek's avatar
dmattek committed
969
  
dmattek's avatar
dmattek committed
970 971
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
972 973
             in.data = dataLongNoOut,
             in.data.stim = dataStim,
dmattek's avatar
dmattek committed
974
             in.fname = function() return(FPDFTCMEAN))
dmattek's avatar
dmattek committed
975
  
dmattek's avatar
dmattek committed
976
  # Trajectory plotting - individual
dmattek's avatar
dmattek committed
977
  callModule(modTrajPlot, 'modTrajPlot', 
978 979
             in.data = dataLongNoOut, 
             in.data.stim = dataStim,
dmattek's avatar
dmattek committed
980 981
             in.fname = function() {return(FPDFTCSINGLE)},
             in.ylab = createYaxisLabel)
dmattek's avatar
dmattek committed
982
  
983 984
  # Trajectory plotting - PSD
  callModule(modPSDPlot, 'modPSDPlot',
985
             in.data = dataLongNoOut,
986 987
             in.fname = function() {return(FPDFTCPSD)})
  
dmattek's avatar
dmattek committed
<