server.R 23.6 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2
3
4
5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6
7
8
9
10
11
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
12
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
13
library(plotly)
dmattek's avatar
dmattek committed
14
15
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
16
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
17
library(RColorBrewer)
dmattek's avatar
dmattek committed
18
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
19
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
20
21
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
22

23
# Global parameters ----
dmattek's avatar
dmattek committed
24
# change to increase the limit of the upload file size
dmattek's avatar
Added:    
dmattek committed
25
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
26

dmattek's avatar
dmattek committed
27
# Server logic ----
dmattek's avatar
dmattek committed
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
  # This is only set at session start
dmattek's avatar
dmattek committed
32
  # We use this as a way to determine which input was
33
34
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
35
36
37
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
38
39
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40
  )
dmattek's avatar
dmattek committed
41
42
43
44
45
46
47
48
49

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
50
  
dmattek's avatar
dmattek committed
51
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
52
  
dmattek's avatar
dmattek committed
53
  # Generate random dataset
54
55
56
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
dmattek's avatar
dmattek committed
57
    return(LOCgenTraj(in.nwells = 3, in.addout = 3))
58
59
  })
  
dmattek's avatar
dmattek committed
60
  # Load main data file
61
62
63
64
65
66
67
68
69
70
71
72
73
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
74
75
76
77
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
78

dmattek's avatar
dmattek committed
79
  # Load data with trajectories to remove
80
81
82
83
84
85
86
87
88
89
90
91
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
92
  
dmattek's avatar
dmattek committed
93
  # Load data with stimulation pattern
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  dataLoadStim <- eventReactive(input$inButLoadStim, {
    cat(file = stderr(), "dataLoadStim\n")
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:    
dmattek committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

127
128
129
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
    cat(file = stderr(), 'UI uiFileLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
130
    
131
132
133
134
135
136
137
138
139
140
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
    cat(file = stderr(), 'UI uiButLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
141
    
142
143
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:    
dmattek committed
144
145
  })
  
146

dmattek's avatar
dmattek committed
147
  
dmattek's avatar
dmattek committed
148
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
149
150
151
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
152
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
153
154
155
    
    selectInput(
      'inSelTrackLabel',
156
      'Select Track Label:',
dmattek's avatar
dmattek committed
157
158
159
160
161
162
163
164
165
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
166
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
167
168
169
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
170
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
171
172
173
174
175
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
176
177
178
179

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
180
181
182
183
184
185
186
187
188
189
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
190
  })
dmattek's avatar
dmattek committed
191
  
dmattek's avatar
dmattek committed
192
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
193
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
194
195
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
196
197
198
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
199
200
201
202
203
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
204
205
206
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
207
208
        selectInput(
          'inSelGroup',
209
          'Select columns for plot grouping:',
dmattek's avatar
dmattek committed
210
211
212
213
214
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
215
216
217
218
      }
    }
  })
  
219
220
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
221
222
223
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
224
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
225
      locCols = getDataNucCols()
226
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
227
228
229
      
      selectInput(
        'inSelSite',
230
        'Select grouping columns to add to track label:',
dmattek's avatar
Added:    
dmattek committed
231
232
        locCols,
        width = '100%',
233
234
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:    
dmattek committed
235
236
      )
    }
dmattek's avatar
dmattek committed
237
238
239
240
241
242
243
244
  })
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
245
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
246

dmattek's avatar
dmattek committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
264
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
265

dmattek's avatar
dmattek committed
266
267
268
269
270
271
272
273
274
275
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
276
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
300
  
dmattek's avatar
dmattek committed
301
  # UI-side-panel-normalization ----
dmattek's avatar
dmattek committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
331
332
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
352
                   label = 'Normalisation grouping',
353
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
354
355
356
357
    }
  })
  
  
dmattek's avatar
dmattek committed
358
  
dmattek's avatar
dmattek committed
359

dmattek's avatar
dmattek committed
360
  # Processing-data ----
dmattek's avatar
dmattek committed
361
  
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
410
  getDataNucCols <- reactive({
411
412
413
414
415
416
417
418
419
420
421
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
422
    cat(file = stderr(), 'dataMod\n')
423
424
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
425
    if (is.null(loc.dt))
426
427
      return(NULL)
    
428
    if (input$chBtrackUni) {
429
430
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
      loc.dt[, trackObjectsLabelUni := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:    
dmattek committed
431
    } else {
432
      # stay with track ID provided in the loaded dataset; has to be unique
dmattek's avatar
Added:    
dmattek committed
433
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
434
435
    }
    
dmattek's avatar
dmattek committed
436
    
dmattek's avatar
Added:    
dmattek committed
437
438
439
440
441
442
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
443
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
444
445
    }
    
446
447
448
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
449
450
451
452
453
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
454
    
dmattek's avatar
dmattek committed
455
456
457
458
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
459
460
  })
  
dmattek's avatar
Mod:    
dmattek committed
461
  
dmattek's avatar
dmattek committed
462
463
464
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
465
466
467
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
468
    
dmattek's avatar
dmattek committed
469
470
471
472
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
473
474
  })
  
dmattek's avatar
dmattek committed
475
  
476
477
478
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
479
  #    realtime - selected from input
dmattek's avatar
dmattek committed
480
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
481
  #               (can be a single column or result of an operation on two cols)
482
483
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
484
485
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
486
487
488
489
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
490
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
491
    cat(file = stderr(), 'data4trajPlot\n')
492
493
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
494
    if (is.null(loc.dt))
495
496
      return(NULL)
    
497
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
498
    if (input$inSelMath == '')
499
500
501
502
503
504
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
505
    # create expression for 'group' column
506
507
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
508
509
510
511
512
513
514
515
516
517
518
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
519
    
dmattek's avatar
dmattek committed
520
521

    # column name with time
522
523
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
524
525
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
526
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
527
    
dmattek's avatar
Added:    
dmattek committed
528
529
    
    # Find column names with position
530
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
531
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
532
    
533
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
534
535
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
536
537
538
539
      locPos = TRUE
    else
      locPos = FALSE
    
540
541
542
543
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
544
545
546
547
548
549
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
550
      loc.s.objnum = loc.s.objnum[1]
551
      locObjNum = TRUE
dmattek's avatar
dmattek committed
552
    }
553
554
    
    
555
556
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
599
        # add a column with status of track selection
600
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
601
    }
602
      
dmattek's avatar
dmattek committed
603

604
    ## Interpolate missing data and NA data points
605
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
606
607
608
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
609
    # Therefore, we cannot rely on that info to get time frequency; user provides this number!
610
    
611
612
    setkey(loc.out, group, id, realtime)

613
614
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
dmattek's avatar
dmattek committed
615
      loc.out = loc.out[setkeyv(loc.out[, .(seq(min(get(COLRT), na.rm = T), max(get(COLRT), na.rm = T), input$inSelTimeFreq)), by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
616
617
618
619
620
621
622
623
      
      # x-check: print all rows with NA's
      print('Rows with NAs:')
      print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
624
        s.cols = c(COLY, COLPOSX, COLPOSY)
625
      else
dmattek's avatar
dmattek committed
626
        s.cols = c(COLY)
627
      
dmattek's avatar
dmattek committed
628
      loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
629
630
631
632
633
634
635
636
637
638
639
640
641
642
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:    
dmattek committed
643
    
644
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
645
    if(input$chBtimeTrim) {
dmattek's avatar
dmattek committed
646
      loc.out = loc.out[get(COLRT) >= input$slTimeTrim[[1]] & get(COLRT) <= input$slTimeTrim[[2]] ]
dmattek's avatar
dmattek committed
647
    }
dmattek's avatar
dmattek committed
648
    
649
    ## Normalization
dmattek's avatar
dmattek committed
650
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
651
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
652
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
653
        in.dt = loc.out,
dmattek's avatar
dmattek committed
654
655
        in.meas.col = COLY,
        in.rt.col = COLRT,
dmattek's avatar
dmattek committed
656
657
658
659
660
661
662
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
663
664
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
665
666
      loc.out[, get(COLY) := NULL]
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
667
668
669
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
670
671
  })
  
dmattek's avatar
dmattek committed
672
673
674
675
676
677
678
679
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
dmattek's avatar
dmattek committed
680
    loc.dt = data4trajPlotNoOut()
dmattek's avatar
dmattek committed
681
682
683
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
684
    #print(loc.dt)
dmattek's avatar
dmattek committed
685
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
686
    #print(loc.out)
dmattek's avatar
dmattek committed
687
688
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
689
    
dmattek's avatar
dmattek committed
690
691
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
692
    
693
694
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
Added:    
dmattek committed
695
696
697
698
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
699
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
Added:    
dmattek committed
700
    
dmattek's avatar
dmattek committed
701
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
702
  }) 
dmattek's avatar
dmattek committed
703
  
dmattek's avatar
dmattek committed
704
  
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
    cat(file = stderr(), 'data4stimPlot\n')
    
    if (input$chBstim) {
      cat(file = stderr(), 'data4stimPlot: stim not NULL\n')
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
      cat(file = stderr(), 'data4stimPlot: stim is NULL\n')
      return(NULL)
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
721
722
723
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
dmattek's avatar
dmattek committed
724
    filename = FCSVTCCLEAN,
dmattek's avatar
Added:    
dmattek committed
725
    content = function(file) {
dmattek's avatar
dmattek committed
726
      write.csv(data4trajPlotNoOut(), file, row.names = FALSE)
dmattek's avatar
Added:    
dmattek committed
727
728
729
    }
  )
  
dmattek's avatar
dmattek committed
730
731
732
  # Plotting-trajectories ----

  # UI for selecting trajectories
733
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
734
735
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
736
    
dmattek's avatar
dmattek committed
737
738
739
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
740
    
dmattek's avatar
dmattek committed
741
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
742
    if (!is.null(loc.v)) {
743
      selectInput(
dmattek's avatar
dmattek committed
744
745
746
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
747
        width = '100%',
dmattek's avatar
dmattek committed
748
        multiple = TRUE
749
      )
dmattek's avatar
dmattek committed
750
751
752
    }
  })
  
dmattek's avatar
dmattek committed
753
754
755
  # Taking out outliers 
  data4trajPlotNoOut = callModule(modSelOutliers, 'returnOutlierIDs', data4trajPlot)
  
dmattek's avatar
dmattek committed
756
757
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
dmattek's avatar
dmattek committed
758
             in.data = data4trajPlotNoOut,
dmattek's avatar
dmattek committed
759
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
760
             in.fname = function() return(FPDFTCMEAN))
dmattek's avatar
dmattek committed
761
  
dmattek's avatar
dmattek committed
762
  # Trajectory plotting - individual
dmattek's avatar
dmattek committed
763
  callModule(modTrajPlot, 'modTrajPlot', 
dmattek's avatar
dmattek committed
764
             in.data = data4trajPlotNoOut, 
dmattek's avatar
dmattek committed
765
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
766
             in.fname = function() {return(FPDFTCSINGLE)})
dmattek's avatar
dmattek committed
767
768
769
  
  
  # Tabs ----
770
  ###### AUC calculation and plotting
dmattek's avatar
dmattek committed
771
  callModule(modAUCplot, 'tabAUC', data4trajPlotNoOut, in.fname = function() return(FPDFBOXAUC))
dmattek's avatar
Added:    
dmattek committed
772
  
dmattek's avatar
Added:    
dmattek committed
773
  ###### Box-plot
dmattek's avatar
dmattek committed
774
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlotNoOut, in.fname = function() return(FPDFBOXTP))
dmattek's avatar
dmattek committed
775
  
dmattek's avatar
dmattek committed
776
  ###### Scatter plot
dmattek's avatar
dmattek committed
777
  callModule(tabScatterPlot, 'tabScatter', data4trajPlotNoOut, in.fname = function() return(FPDFSCATTER))
dmattek's avatar
dmattek committed
778
  
dmattek's avatar
dmattek committed
779
  ##### Hierarchical clustering
dmattek's avatar
dmattek committed
780
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
781
782
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
dmattek committed
783
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
784

dmattek's avatar
Mod:    
dmattek committed
785
  
dmattek's avatar
dmattek committed
786
})