server.R 25.4 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2
3
4
5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6
7
8
9
10
11
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
12
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
13
library(plotly)
dmattek's avatar
dmattek committed
14
15
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
16
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
17
library(RColorBrewer)
dmattek's avatar
dmattek committed
18
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
19
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
20
21
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
22

dmattek's avatar
dmattek committed
23
# change to increase the limit of the upload file size
dmattek's avatar
Added:    
dmattek committed
24
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
25

dmattek's avatar
dmattek committed
26
# Server logic ----
dmattek's avatar
dmattek committed
27
shinyServer(function(input, output, session) {
28
  useShinyjs()
dmattek's avatar
dmattek committed
29
  
30
  # This is only set at session start
dmattek's avatar
dmattek committed
31
  # We use this as a way to determine which input was
32
33
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
34
35
36
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
37
38
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
39
40
  )
  
dmattek's avatar
dmattek committed
41
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
42
  
dmattek's avatar
dmattek committed
43
  # Generate random dataset
44
45
46
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
dmattek's avatar
dmattek committed
47
    return(LOCgenTraj(in.nwells = 3))
48
49
  })
  
dmattek's avatar
dmattek committed
50
  # Load main data file
51
52
53
54
55
56
57
58
59
60
61
62
63
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
64
65
66
67
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
68

dmattek's avatar
dmattek committed
69
  # Load data with trajectories to remove
70
71
72
73
74
75
76
77
78
79
80
81
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
82
  
dmattek's avatar
dmattek committed
83
  # Load data with stimulation pattern
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  dataLoadStim <- eventReactive(input$inButLoadStim, {
    cat(file = stderr(), "dataLoadStim\n")
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:    
dmattek committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

117
118
119
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
    cat(file = stderr(), 'UI uiFileLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
120
    
121
122
123
124
125
126
127
128
129
130
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
    cat(file = stderr(), 'UI uiButLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
131
    
132
133
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:    
dmattek committed
134
135
  })
  
136

dmattek's avatar
dmattek committed
137
  
dmattek's avatar
dmattek committed
138
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
139
140
141
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
142
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
143
144
145
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
146
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
147
148
149
150
151
152
153
154
155
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
156
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
157
158
159
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
160
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
161
162
163
164
165
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
166
167
168
169

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
170
171
172
173
174
175
176
177
178
179
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
180
  })
dmattek's avatar
dmattek committed
181
  
dmattek's avatar
dmattek committed
182
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
183
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
184
185
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
186
187
188
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
189
190
191
192
193
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
194
195
196
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
197
198
199
200
201
202
203
204
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
205
206
207
208
209
210
211
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
212
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
213
      locCols = getDataNucCols()
214
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
215
216
217
218
219
220
221
222
223
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
224
225
226
227
228
229
230
231
  })
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
232
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
233

dmattek's avatar
dmattek committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
251
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
252

dmattek's avatar
dmattek committed
253
254
255
256
257
258
259
260
261
262
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
263
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
287
  
dmattek's avatar
dmattek committed
288
  # UI-side-panel-normalization ----
dmattek's avatar
dmattek committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
318
319
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
339
                   label = 'Normalisation grouping',
340
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
341
342
343
344
    }
  })
  
  
dmattek's avatar
dmattek committed
345
  # UI-side-panel-remove-outliers ----
dmattek's avatar
dmattek committed
346
347
348
349
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
350
      
dmattek's avatar
dmattek committed
351
352
353
354
355
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
356
        value = 99.5, 
dmattek's avatar
dmattek committed
357
358
        step = 0.1
      )
dmattek's avatar
dmattek committed
359
      
dmattek's avatar
Mod:    
dmattek committed
360
      
dmattek's avatar
dmattek committed
361
362
363
    }
  })
  
dmattek's avatar
dmattek committed
364
  
dmattek's avatar
dmattek committed
365
  # Processing-data ----
dmattek's avatar
dmattek committed
366
  
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
415
  getDataNucCols <- reactive({
416
417
418
419
420
421
422
423
424
425
426
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
427
    cat(file = stderr(), 'dataMod\n')
428
429
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
430
    if (is.null(loc.dt))
431
432
      return(NULL)
    
433
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
453
    } else {
dmattek's avatar
Added:    
dmattek committed
454
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
455
456
    }
    
dmattek's avatar
dmattek committed
457
    
dmattek's avatar
Added:    
dmattek committed
458
459
460
461
462
463
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
464
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
465
466
    }
    
467
468
469
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
470
471
472
473
474
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
475
    
dmattek's avatar
dmattek committed
476
477
478
479
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
480
481
  })
  
dmattek's avatar
Mod:    
dmattek committed
482
  
dmattek's avatar
dmattek committed
483
484
485
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
486
487
488
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
489
    
dmattek's avatar
dmattek committed
490
491
492
493
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
494
495
  })
  
dmattek's avatar
dmattek committed
496
  
497
498
499
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
500
  #    realtime - selected from input
dmattek's avatar
dmattek committed
501
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
502
  #               (can be a single column or result of an operation on two cols)
503
504
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
505
506
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
507
508
509
510
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
511
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
512
    cat(file = stderr(), 'data4trajPlot\n')
513
514
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
515
    if (is.null(loc.dt))
516
517
      return(NULL)
    
518
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
519
    if (input$inSelMath == '')
520
521
522
523
524
525
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
526
    # create expression for 'group' column
527
528
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
529
530
531
532
533
534
535
536
537
538
539
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
540
    
dmattek's avatar
dmattek committed
541
542

    # column name with time
543
544
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
545
546
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
547
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
548
    
dmattek's avatar
Added:    
dmattek committed
549
550
    
    # Find column names with position
551
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
552
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
553
    
554
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
555
556
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
557
558
559
560
      locPos = TRUE
    else
      locPos = FALSE
    
561
562
563
564
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
565
566
567
568
569
570
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
571
      loc.s.objnum = loc.s.objnum[1]
572
      locObjNum = TRUE
dmattek's avatar
dmattek committed
573
    }
574
575
    
    
576
577
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
620
        # add a column with status of track selection
621
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
622
    }
623
      
dmattek's avatar
dmattek committed
624

625
    ## Interpolate missing data and NA data points
626
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
627
628
629
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
630
    # Therefore, we cannot rely on that info to get time frequency; user provides this number!
631
    
632
633
    setkey(loc.out, group, id, realtime)

634
635
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
636
      loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime, na.rm = T), max(realtime, na.rm = T), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
      
      # x-check: print all rows with NA's
      print('Rows with NAs:')
      print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
        s.cols = c('y', 'pos.x', 'pos.y')
      else
        s.cols = c('y')
      
      loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:    
dmattek committed
664
    
665
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
666
667
668
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
669
    
670
    ## Normalization
dmattek's avatar
dmattek committed
671
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
672
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
673
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
674
675
676
677
678
679
680
681
682
683
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
684
685
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
686
687
688
689
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
690
691
692
693
694
695
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
696
697
698
699
700
701
702
703
704
705
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
706
707
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T)]
dmattek's avatar
dmattek committed
708
709
710
711
712
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
713
    
dmattek's avatar
dmattek committed
714
    return(loc.out)
dmattek's avatar
dmattek committed
715
716
  })
  
dmattek's avatar
dmattek committed
717
718
719
720
721
722
723
724
725
726
727
728
729
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
730
    #print(loc.dt)
dmattek's avatar
dmattek committed
731
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
732
    #print(loc.out)
dmattek's avatar
dmattek committed
733
734
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
735
    
dmattek's avatar
dmattek committed
736
737
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
738
    
739
740
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
Added:    
dmattek committed
741
742
743
744
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
745
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
Added:    
dmattek committed
746
    
dmattek's avatar
dmattek committed
747
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
748
  }) 
dmattek's avatar
dmattek committed
749
  
dmattek's avatar
dmattek committed
750
  
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
    cat(file = stderr(), 'data4stimPlot\n')
    
    if (input$chBstim) {
      cat(file = stderr(), 'data4stimPlot: stim not NULL\n')
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
      cat(file = stderr(), 'data4stimPlot: stim is NULL\n')
      return(NULL)
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
767
768
769
770
771
772
773
774
775
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
776
777
778
  # Plotting-trajectories ----

  # UI for selecting trajectories
779
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
780
781
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
782
    
dmattek's avatar
dmattek committed
783
784
785
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
786
    
dmattek's avatar
dmattek committed
787
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
788
    if (!is.null(loc.v)) {
789
      selectInput(
dmattek's avatar
dmattek committed
790
791
792
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
793
        width = '100%',
dmattek's avatar
dmattek committed
794
        multiple = TRUE
795
      )
dmattek's avatar
dmattek committed
796
797
798
    }
  })
  
dmattek's avatar
dmattek committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
             in.data = data4trajPlot,
             in.data.stim = data4stimPlot,
             in.fname = function() return( "tCoursesMeans.pdf"))
  
  ###### Trajectory plotting - individual
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
             in.data.stim = data4stimPlot,
             in.fname = function() {return( "tCourses.pdf")})
  
  
  # Tabs ----
813
  ###### AUC calculation and plotting
814
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
Added:    
dmattek committed
815
  
dmattek's avatar
Added:    
dmattek committed
816
  ###### Box-plot
817
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
818
  
dmattek's avatar
dmattek committed
819
  ###### Scatter plot
820
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
821
  
dmattek's avatar
dmattek committed
822
  ##### Hierarchical clustering
823
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
824
825
  
  ##### Sparse hierarchical clustering using sparcl
826
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
827

dmattek's avatar
Mod:    
dmattek committed
828
  
dmattek's avatar
dmattek committed
829
})