server.R 25.4 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9 10 11
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
12
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
13
library(plotly)
dmattek's avatar
dmattek committed
14 15
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
16
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
17
library(RColorBrewer)
dmattek's avatar
dmattek committed
18
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
19
library(scales) # for percentages on y scale
dmattek's avatar
Added:  
dmattek committed
20 21
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
22

dmattek's avatar
dmattek committed
23
# change to increase the limit of the upload file size
dmattek's avatar
Added:  
dmattek committed
24
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
25

dmattek's avatar
dmattek committed
26
# Server logic ----
dmattek's avatar
dmattek committed
27
shinyServer(function(input, output, session) {
28
  useShinyjs()
dmattek's avatar
dmattek committed
29
  
30
  # This is only set at session start
dmattek's avatar
dmattek committed
31
  # We use this as a way to determine which input was
32 33
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
34 35 36
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
37 38
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
39 40
  )
  
dmattek's avatar
dmattek committed
41
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
42
  
dmattek's avatar
dmattek committed
43
  # Generate random dataset
44 45 46
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
dmattek's avatar
dmattek committed
47
    return(LOCgenTraj(in.nwells = 3))
48 49
  })
  
dmattek's avatar
dmattek committed
50
  # Load main data file
51 52 53 54 55 56 57 58 59 60 61 62 63
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
64 65 66 67
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
68

dmattek's avatar
dmattek committed
69
  # Load data with trajectories to remove
70 71 72 73 74 75 76 77 78 79 80 81
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
82
  
dmattek's avatar
dmattek committed
83
  # Load data with stimulation pattern
84 85 86 87 88 89 90 91 92 93 94 95 96 97
  dataLoadStim <- eventReactive(input$inButLoadStim, {
    cat(file = stderr(), "dataLoadStim\n")
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:  
dmattek committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

117 118 119
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
    cat(file = stderr(), 'UI uiFileLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
120
    
121 122 123 124 125 126 127 128 129 130
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
    cat(file = stderr(), 'UI uiButLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
131
    
132 133
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:  
dmattek committed
134 135
  })
  
136

dmattek's avatar
dmattek committed
137
  
dmattek's avatar
dmattek committed
138
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
139 140 141
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
142
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
143 144 145
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
146
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
147 148 149 150 151 152 153 154 155
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
156
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
157 158 159
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
160
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
161 162 163 164 165
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
166 167 168 169

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
170 171 172 173 174 175 176 177 178 179
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
180
  })
dmattek's avatar
dmattek committed
181
  
dmattek's avatar
dmattek committed
182
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
183
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
184 185
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
186 187 188
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
189 190 191 192 193
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
194 195 196
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
197 198 199 200 201 202 203 204
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
205 206 207 208 209 210 211
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
212
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
213
      locCols = getDataNucCols()
214
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
215 216 217 218 219 220 221 222 223
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
224 225 226 227 228 229 230 231
  })
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
232
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
233

dmattek's avatar
dmattek committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
251
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
252

dmattek's avatar
dmattek committed
253 254 255 256 257 258 259 260 261 262
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
263
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
287
  
dmattek's avatar
dmattek committed
288
  # UI-side-panel-normalization ----
dmattek's avatar
dmattek committed
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
318 319
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
339
                   label = 'Normalisation grouping',
340
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
341 342 343 344
    }
  })
  
  
dmattek's avatar
dmattek committed
345
  # UI-side-panel-remove-outliers ----
dmattek's avatar
dmattek committed
346 347 348 349
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:  
dmattek committed
350
      
dmattek's avatar
dmattek committed
351 352 353 354 355
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:  
dmattek committed
356
        value = 99.5, 
dmattek's avatar
dmattek committed
357 358
        step = 0.1
      )
dmattek's avatar
dmattek committed
359
      
dmattek's avatar
Mod:  
dmattek committed
360
      
dmattek's avatar
dmattek committed
361 362 363
    }
  })
  
dmattek's avatar
dmattek committed
364
  
dmattek's avatar
dmattek committed
365
  # Processing-data ----
dmattek's avatar
dmattek committed
366
  
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
415
  getDataNucCols <- reactive({
416 417 418 419 420 421 422 423 424 425 426
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
427
    cat(file = stderr(), 'dataMod\n')
428 429
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
430
    if (is.null(loc.dt))
431 432
      return(NULL)
    
433
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:  
dmattek committed
453
    } else {
dmattek's avatar
Added:  
dmattek committed
454
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
455 456
    }
    
dmattek's avatar
dmattek committed
457
    
dmattek's avatar
Added:  
dmattek committed
458 459 460 461 462 463
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
464
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
465 466
    }
    
467 468 469
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
470 471 472 473 474
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
475
    
dmattek's avatar
dmattek committed
476 477 478 479
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
480 481
  })
  
dmattek's avatar
Mod:  
dmattek committed
482
  
dmattek's avatar
dmattek committed
483 484 485
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
486 487 488
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
489
    
dmattek's avatar
dmattek committed
490 491 492 493
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
494 495
  })
  
dmattek's avatar
dmattek committed
496
  
497 498 499
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
500
  #    realtime - selected from input
dmattek's avatar
dmattek committed
501
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
502
  #               (can be a single column or result of an operation on two cols)
503 504
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
505 506
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
507 508 509 510
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
511
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
512
    cat(file = stderr(), 'data4trajPlot\n')
513 514
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
515
    if (is.null(loc.dt))
516 517
      return(NULL)
    
518
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
519
    if (input$inSelMath == '')
520 521 522 523 524 525
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
526
    # create expression for 'group' column
527 528
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
529 530 531 532 533 534 535 536 537 538 539
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
540
    
dmattek's avatar
dmattek committed
541 542

    # column name with time
543 544
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
545 546
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
547
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
548
    
dmattek's avatar
Added:  
dmattek committed
549 550
    
    # Find column names with position
551
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
552
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
553
    
554
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
555 556
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
557 558 559 560
      locPos = TRUE
    else
      locPos = FALSE
    
561 562 563 564
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
565 566 567 568 569 570
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
571
      loc.s.objnum = loc.s.objnum[1]
572
      locObjNum = TRUE
dmattek's avatar
dmattek committed
573
    }
574 575
    
    
576 577
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:  
dmattek committed
620
        # add a column with status of track selection
621
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
622
    }
623
      
dmattek's avatar
dmattek committed
624

625
    ## Interpolate missing data and NA data points
626
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
627 628 629
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
630
    # Therefore, we cannot rely on that info to get time frequency; user provides this number!
631
    
632 633
    setkey(loc.out, group, id, realtime)

634 635
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
636
      loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime, na.rm = T), max(realtime, na.rm = T), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
      
      # x-check: print all rows with NA's
      print('Rows with NAs:')
      print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
        s.cols = c('y', 'pos.x', 'pos.y')
      else
        s.cols = c('y')
      
      loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
664
    
665
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
666 667 668
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
669
    
670
    ## Normalization
dmattek's avatar
dmattek committed
671
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
672
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
673
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
674 675 676 677 678 679 680 681 682 683
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
684 685
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
686 687 688 689
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
690 691 692 693 694 695
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
696 697 698 699 700 701 702 703 704 705
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
706 707
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T)]
dmattek's avatar
dmattek committed
708 709 710 711 712
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:  
dmattek committed
713
    
dmattek's avatar
dmattek committed
714
    return(loc.out)
dmattek's avatar
dmattek committed
715 716
  })
  
dmattek's avatar
dmattek committed
717 718 719 720 721 722 723 724 725 726 727 728 729
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:  
dmattek committed
730
    #print(loc.dt)
dmattek's avatar
dmattek committed
731
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:  
dmattek committed
732
    #print(loc.out)
dmattek's avatar
dmattek committed
733 734
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:  
dmattek committed
735
    
dmattek's avatar
dmattek committed
736 737
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
738
    
739 740
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
Added:  
dmattek committed
741 742 743 744
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
745
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
Added:  
dmattek committed
746
    
dmattek's avatar
dmattek committed
747
    return(loc.out)
dmattek's avatar
Mod:  
dmattek committed
748
  }) 
dmattek's avatar
dmattek committed
749
  
dmattek's avatar
dmattek committed
750
  
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
    cat(file = stderr(), 'data4stimPlot\n')
    
    if (input$chBstim) {
      cat(file = stderr(), 'data4stimPlot: stim not NULL\n')
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
      cat(file = stderr(), 'data4stimPlot: stim is NULL\n')
      return(NULL)
    }
  })
  
dmattek's avatar
Added:  
dmattek committed
767 768 769 770 771 772 773 774 775
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
776 777 778
  # Plotting-trajectories ----

  # UI for selecting trajectories
779
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
780 781
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
782
    
dmattek's avatar
dmattek committed
783 784 785
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
786
    
dmattek's avatar
dmattek committed
787
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
788
    if (!is.null(loc.v)) {
789
      selectInput(
dmattek's avatar
dmattek committed
790 791 792
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
793
        width = '100%',
dmattek's avatar
dmattek committed
794
        multiple = TRUE
795
      )
dmattek's avatar
dmattek committed
796 797 798
    }
  })
  
dmattek's avatar
dmattek committed
799 800 801 802 803 804 805 806 807 808 809 810 811 812
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
             in.data = data4trajPlot,
             in.data.stim = data4stimPlot,
             in.fname = function() return( "tCoursesMeans.pdf"))
  
  ###### Trajectory plotting - individual
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
             in.data.stim = data4stimPlot,
             in.fname = function() {return( "tCourses.pdf")})
  
  
  # Tabs ----
813
  ###### AUC calculation and plotting
814
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
Added:  
dmattek committed
815
  
dmattek's avatar
Added:  
dmattek committed
816
  ###### Box-plot
817
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
818
  
dmattek's avatar
dmattek committed
819
  ###### Scatter plot
820
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
821
  
dmattek's avatar
dmattek committed
822
  ##### Hierarchical clustering
823
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
824 825
  
  ##### Sparse hierarchical clustering using sparcl
826
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
827

dmattek's avatar
Mod:  
dmattek committed
828
  
dmattek's avatar
dmattek committed
829
})