auxfunc.R 12.3 KB
Newer Older
dmattek's avatar
dmattek committed
1
## Custom plotting
dmattek's avatar
dmattek committed
2
3
require(ggplot2)

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

dmattek's avatar
dmattek committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
s.cl.linkage = c("ward.D",
                 "ward.D2",
                 "single",
                 "complete",
                 "average",
                 "mcquitty",
                 "centroid")

s.cl.spar.linkage = c("average",
                      "complete", 
                      "single",
                      "centroid")

s.cl.diss = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")
s.cl.spar.diss = c("squared.distance","absolute.value")

l.col.pal = list(
  "White-Orange-Red" = 'OrRd',
  "Yellow-Orange-Red" = 'YlOrRd',
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
  "Blues" = "Blues",
  "Spectral" = 'Spectral'
)


dmattek's avatar
dmattek committed
56
57
58
59
60
61
62
63
64
65
66
67
myGgplotTraj = function(dt.arg,
                        x.arg,
                        y.arg,
                        group.arg,
                        facet.arg,
                        facet.ncol.arg = 2,
                        line.col.arg = NULL,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        dt.stim.arg = NULL,
                        tfreq.arg = 1,
dmattek's avatar
dmattek committed
68
                        ylim.arg = NULL,
dmattek's avatar
dmattek committed
69
                        stim.bar.height.arg = 0.1,
dmattek's avatar
Added:    
dmattek committed
70
71
72
73
74
                        stim.bar.width.arg = 0.5,
                        aux.label1 = NULL,
                        aux.label2 = NULL) {
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
75
76
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
77
                            y = y.arg,
dmattek's avatar
Added:    
dmattek committed
78
79
80
                            group = group.arg,
                            label  = aux.label1,
                            label2 = aux.label2))
dmattek's avatar
dmattek committed
81
  
dmattek's avatar
dmattek committed
82
83
84
85
86
87
88
89
90
91
92
93
94
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
dmattek committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  
  p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.y = mean,
      colour = 'blue',
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
    ) +
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
  
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes(x = Stimulation_time - tfreq.arg,
                                     xend = Stimulation_time - tfreq.arg,
                                     y = ylim.arg[1],
                                     yend = ylim.arg[1] + abs(ylim.arg[2] - ylim.arg[1]) * stim.bar.height.arg),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }
  
dmattek's avatar
dmattek committed
121
122
123
  if (!is.null(ylim.arg)) 
    p.tmp = p.tmp + coord_cartesian(ylim = ylim.arg)
  
dmattek's avatar
dmattek committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
    theme_bw(base_size = 18, base_family = "Helvetica") +
    theme(
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line.x = element_line(color = "black", size = 0.25),
      axis.line.y = element_line(color = "black", size = 0.25),
      axis.text.x = element_text(size = 12),
      axis.text.y = element_text(size = 12),
      strip.text.x = element_text(size = 14, face = "bold"),
      strip.text.y = element_text(size = 14, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"),
      legend.position = "top"
    )
  
  p.tmp
}


userDataGen <- function() {  
  cat(file=stderr(), 'userDataGen: in\n')
  
dmattek's avatar
dmattek committed
153
  locNtp = 40
154
  locNtracks = 100
dmattek's avatar
dmattek committed
155
  locNsites = 4
156
157
158
159
160
161
162
163
  locNwells = 1
  
  x.rand.1 = c(rnorm(locNtp * locNtracks * locNsites * 0.5, 2, 0.5), rnorm(locNtp * locNtracks * locNsites * 0.5, 2, 0.5))
  x.rand.2 = c(rnorm(locNtp * locNtracks * locNsites * 0.5, 0, 0.1), rnorm(locNtp * locNtracks * locNsites * 0.5, 0, 0.1))
  x.rand.3 = rep(rnorm(locNtracks, 2, 0.5), 1, each = locNtp)
  x.rand.4 = rep(rnorm(locNtracks, 1, 0.1), 1, each = locNtp)
  
  x.arg = rep(seq(0, locNtp-1) / locNtp * 4 * pi, locNtracks * locNsites)
dmattek's avatar
dmattek committed
164
165
166
  
  dt.nuc = data.table(Metadata_Site = rep(1:locNsites, each = locNtp * locNtracks),
                      Metadata_Well = rep(1:locNwells, each = locNtp * locNsites * locNtracks / locNwells),
167
168
169
170
                      Metadata_RealTime = x.arg,
#                      objCyto_Intensity_MeanIntensity_imErkCor = c(rnorm(locNtp * locNtracks * locNsites * 0.5, .5, 0.1), rnorm(locNtp * locNtracks * locNsites * 0.5, 1, 0.2)),
#                      objNuc_Intensity_MeanIntensity_imErkCor  = c(rnorm(locNtp * locNtracks * locNsites * 0.5, .25, 0.1), rnorm(locNtp * locNtracks * locNsites * 0.5, .5, 0.2)),
                      objCyto_Intensity_MeanIntensity_imErkCor = x.rand.3 + ifelse(x.arg < 4, 0, 1) / x.rand.3,
dmattek's avatar
dmattek committed
171
                      objNuc_Intensity_MeanIntensity_imErkCor  = c(rnorm(locNtp * locNtracks * locNsites * 0.5, .25, 0.1), rnorm(locNtp * locNtracks * locNsites * 0.5, .5, 0.2)),
dmattek's avatar
dmattek committed
172
173
174
175
176
                      TrackLabel = rep(1:(locNtracks*locNsites), each = locNtp))
  
  cat(colnames(dt.nuc))
  return(dt.nuc)
}
dmattek's avatar
dmattek committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


# Returns original dt with an additional column with normalized quantity.
# The column to be normalised is given by 'in.meas.col'.
# The name of additional column is the same as in.meas.col but with ".norm" suffix added.
# Normalisation is based on part of the trajectory;
# this is defined by in.rt.min and max, and the column with time in.rt.col.
# Additional parameters:
# in.by.cols - character vector with 'by' columns to calculate normalisation per group
#              if NULL, no grouping is done
# in.robust - whether robust measures should be used (median instead of mean, mad instead of sd)
# in.type - type of normalization: z.score or mean (fi.e. old change w.r.t. mean)

myNorm = function(in.dt,
                  in.meas.col,
                  in.rt.col = 'RealTime',
                  in.rt.min = 10,
                  in.rt.max = 20,
                  in.by.cols = NULL,
                  in.robust = TRUE,
                  in.type = 'z.score') {
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) > in.rt.min &
                                 get(in.rt.col) < in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                               meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) > in.rt.min &
                                 get(in.rt.col) < in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                               meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) > in.rt.min &
                                 get(in.rt.col) < in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                               meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) > in.rt.min &
                                 get(in.rt.col) < in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                               meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
dmattek's avatar
dmattek committed
236
237
}

dmattek's avatar
dmattek committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Plots a scatter plot with marginal histograms
# Points are connected by a line (grouping by cellID)
#
# Assumes an input of data.table with
# x, y - columns with x and y coordinates
# id - a unique point identifier (here corresponds to cellID)
# mid - a (0,1) column by which points are coloured (here corresponds to whether cells are within bounds)

myGgplotScat = function(dt.arg,
                        band.arg = NULL,
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
                        group.col.arg = NULL) {
  p.tmp = ggplot(dt.arg, aes(x = x, y = y))
  
  if (is.null(group.col.arg)) {
    p.tmp = p.tmp +
      geom_point(alpha = alpha.arg, aes(group = id))
  } else {
    p.tmp = p.tmp +
      geom_point(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      geom_path(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      scale_color_manual(name = group.col.arg, values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green'))
  }
  
  if (is.null(band.arg))
    p.tmp = p.tmp +
      stat_smooth(
        method = function(formula, data, weights = weight)
          rlm(formula, data, weights = weight, method = 'MM'),
        fullrange = FALSE,
        level = 0.95,
        colour = 'blue'
      )
  else {
    p.tmp = p.tmp +
      geom_abline(slope = band.arg$a, intercept = band.arg$b) +
      geom_abline(
        slope = band.arg$a,
        intercept =  band.arg$b + abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      ) +
      geom_abline(
        slope = band.arg$a,
        intercept = band.arg$b - abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      )
  }
  
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  
  
  p.tmp = p.tmp +
    theme_bw(base_size = 18, base_family = "Helvetica") +
    theme(
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      axis.line.x = element_line(color = "black", size = 0.25),
      axis.line.y = element_line(color = "black", size = 0.25),
      axis.text.x = element_text(size = 12),
      axis.text.y = element_text(size = 12),
      strip.text.x = element_text(size = 14, face = "bold"),
      strip.text.y = element_text(size = 14, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"),
      legend.position = "none"
    )
  
  # Marginal distributions don;t work with plotly...
  # if (is.null(facet.arg))
  #   ggExtra::ggMarginal(p.scat, type = "histogram",  bins = 100)
  # else
  return(p.tmp)
}
dmattek's avatar
dmattek committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

myGgplotTheme = theme_bw(base_size = 18, base_family = "Helvetica") +
  theme(
    panel.grid.minor = element_blank(),
    panel.grid.major = element_blank(),
    axis.line.x = element_line(color = "black", size = 0.25),
    axis.line.y = element_line(color = "black", size = 0.25),
    axis.text.x = element_text(size = 12, angle = 45, hjust = 1),
    axis.text.y = element_text(size = 12),
    strip.text.x = element_text(size = 14, face = "bold"),
    strip.text.y = element_text(size = 14, face = "bold"),
    strip.background = element_blank(),
    legend.key = element_blank(),
    legend.key.height = unit(1, "lines"),
    legend.key.width = unit(2, "lines"),
    legend.position = "right"
  )