server.R 22.9 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
18
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
19
20
21
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
22
23
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
24

25
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
26
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
27

dmattek's avatar
dmattek committed
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
32
33
34
35
36
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:    
dmattek committed
37
38
    dataLoadNuc  = isolate(input$inButLoadNuc),
    dataLoadTrajRem = isolate(input$inButLoadTrajRem)
39
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40
41
  )
  
dmattek's avatar
dmattek committed
42
43
44
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
45
  # FILE LOAD
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
73
74
75
76
77
78
79
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
Added:    
dmattek committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

  # load main data file
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
113
114
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
115
116
117
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
118
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
119
120
121
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
122
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
123
124
125
126
127
128
129
130
131
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
132
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
133
134
135
136
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
137
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
138
139
140
141
142
143
144
145
146
147
148
149
150
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
151
152
153
154
155
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
156
157
158
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
159
160
161
162
163
164
165
166
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
167
168
169
170
171
172
173
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
dmattek's avatar
Added:    
dmattek committed
174
175
    if (!input$chBtrackUni) {
      locCols = getDataNucCols()
176
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
177
178
179
180
181
182
183
184
185
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
186
187
188
189
190
191
192
193
194
195
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
196
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
197

dmattek's avatar
dmattek committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
215
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
216

dmattek's avatar
dmattek committed
217
218
219
220
221
222
223
224
225
226
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
251
  
dmattek's avatar
dmattek committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
283
284
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
304
305
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
306
307
308
309
    }
  })
  
  
dmattek's avatar
dmattek committed
310
311
312
313
314
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
315
      
dmattek's avatar
dmattek committed
316
317
318
319
320
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
321
        value = 99.5, 
dmattek's avatar
dmattek committed
322
323
        step = 0.1
      )
dmattek's avatar
dmattek committed
324
      
dmattek's avatar
Mod:    
dmattek committed
325
      
dmattek's avatar
dmattek committed
326
327
328
    }
  })
  
dmattek's avatar
dmattek committed
329
330
331
332
333
334
335
336
337
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
338
  
dmattek's avatar
dmattek committed
339
340
341
342
343
344
345
346
347
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
397
  getDataNucCols <- reactive({
398
399
400
401
402
403
404
405
406
407
408
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
409
    cat(file = stderr(), 'dataMod\n')
410
411
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
412
    if (is.null(loc.dt))
413
414
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    if (!input$chBtrackUni) {
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
435
    } else {
dmattek's avatar
Added:    
dmattek committed
436
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
437
438
    }
    
dmattek's avatar
dmattek committed
439
    
dmattek's avatar
Added:    
dmattek committed
440
441
442
443
444
445
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
446
447
      
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
448
449
    }
    
450
451
452
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
453
454
455
456
457
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
458
    
dmattek's avatar
dmattek committed
459
460
461
462
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
463
464
  })
  
dmattek's avatar
Mod:    
dmattek committed
465
  
dmattek's avatar
dmattek committed
466
467
468
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
469
470
471
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
472
    
dmattek's avatar
dmattek committed
473
474
475
476
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
477
478
  })
  
dmattek's avatar
dmattek committed
479
  
480
481
482
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
483
  #    realtime - selected from input
dmattek's avatar
dmattek committed
484
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
485
  #               (can be a single column or result of an operation on two cols)
486
487
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
488
489
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
490
491
492
493
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
494
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
495
    cat(file = stderr(), 'data4trajPlot\n')
496
497
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
498
    if (is.null(loc.dt))
499
500
      return(NULL)
    
501
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
502
    if (input$inSelMath == '')
503
504
505
506
507
508
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
509
    # create expression for 'group' column
510
511
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
512
513
514
515
516
517
518
519
520
521
522
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
523
    
dmattek's avatar
dmattek committed
524
525

    # column name with time
526
527
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
528
529
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
530
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
531
    
dmattek's avatar
Added:    
dmattek committed
532
533
    
    # Find column names with position
534
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
535
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
536
    
537
538
539
    cat(loc.s.pos.x, loc.s.pos.y, '\n')
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
540
541
542
543
      locPos = TRUE
    else
      locPos = FALSE
    
544
545
546
547
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
548
549
550
551
552
553
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
554
      loc.s.objnum = loc.s.objnum[1]
555
      locObjNum = TRUE
dmattek's avatar
dmattek committed
556
    }
557
558
    
    
559
560
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
603
        # add a column with status of track selection
604
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
605
    }
606
      
dmattek's avatar
dmattek committed
607

608
609
610
611
612
613
    ## Interpolate NA's and data points not include
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
    # Tracks are interpolated only within min and max realtime of every cell id
    setkey(loc.out, group, id, realtime)
    loc.out = loc.out[setkey(loc.out[, .(min(realtime):max(realtime)), by = .(group, id)], group, id, V1)]

dmattek's avatar
dmattek committed
614
615
616
617
618
619
620
    # x-check: print all rows with NA's
    print('Rows with NAs:')
    print(loc.out[rowSums(is.na(loc.out)) > 0, ])
    
    # Merge will create NA's where a realtime is missing.
    # Also, NA's may be already present in the dataset'.
    # Interpolate (linear) them with na.interpolate
621
    if(locPos)
dmattek's avatar
dmattek committed
622
      s.cols = c('y', 'pos.x', 'pos.y')
623
    else
dmattek's avatar
dmattek committed
624
      s.cols = c('y')
625
626
    
    loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
dmattek's avatar
dmattek committed
627
628
629
630
631
632
633
634
635
636
637
638
    

    # !!! Current issue with interpolation:
    # The column mid.in is not taken into account.
    # If a trajectory is selected in the UI,
    # the mid.in column is added (if it doesn't already exist in the dataset),
    # and for the interpolated point, it will still be NA. Not really an issue.
    #
    # Also, think about the current option of having mid.in column in the uploaded dataset.
    # Keep it? Expand it?
    # Create a UI filed for selecting the column with mid.in data.
    # What to do with that column during interpolation (see above)
dmattek's avatar
Mod:    
dmattek committed
639
    
640
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
641
642
643
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
644
    
645
    ## Normalization
dmattek's avatar
dmattek committed
646
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
647
648
649
650
651
652
653
654
655
656
657
658
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
659
660
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
661
662
663
664
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
665
666
667
668
669
670
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
688
    
dmattek's avatar
dmattek committed
689
    return(loc.out)
dmattek's avatar
dmattek committed
690
691
  })
  
dmattek's avatar
dmattek committed
692
693
694
695
696
697
698
699
700
701
702
703
704
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
705
    #print(loc.dt)
dmattek's avatar
dmattek committed
706
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
707
    #print(loc.out)
dmattek's avatar
dmattek committed
708
709
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
710
    
dmattek's avatar
dmattek committed
711
712
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
713
714
715
716
717
718
719
    
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
    loc.out = t(na.interpolation(t(loc.out)))
    
dmattek's avatar
dmattek committed
720
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
721
  }) 
dmattek's avatar
dmattek committed
722
  
dmattek's avatar
dmattek committed
723
  
dmattek's avatar
Added:    
dmattek committed
724
725
726
727
728
729
730
731
732
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
733
  
dmattek's avatar
dmattek committed
734
735
736
737
  ####
  ## UI for trajectory plot
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
738
    
dmattek's avatar
dmattek committed
739
740
741
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
742
    
dmattek's avatar
dmattek committed
743
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
744
    if (!is.null(loc.v)) {
745
      selectInput(
dmattek's avatar
dmattek committed
746
747
748
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
749
        width = '100%',
dmattek's avatar
dmattek committed
750
        multiple = TRUE
751
      )
dmattek's avatar
dmattek committed
752
753
754
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
755
  ###### Trajectory plotting
dmattek's avatar
Mod:    
dmattek committed
756
  callModule(modTrajPlot, 'modTrajPlot', data4trajPlot)
dmattek's avatar
dmattek committed
757
  
dmattek's avatar
Added:    
dmattek committed
758
759
760
  ###### AUC caluclation and plotting
  callModule(modAUCplot, 'tabAUC', data4trajPlot)
  
dmattek's avatar
Added:    
dmattek committed
761
762
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
763
  
dmattek's avatar
dmattek committed
764
765
  
  
dmattek's avatar
dmattek committed
766
767
768
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
769
  ##### Hierarchical clustering
dmattek's avatar
Added:    
dmattek committed
770
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
771
772
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
Added:    
dmattek committed
773
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
774

dmattek's avatar
Mod:    
dmattek committed
775
  
dmattek's avatar
dmattek committed
776
})