auxfunc.R 27.3 KB
Newer Older
dmattek's avatar
dmattek committed
1 2 3 4 5 6 7 8
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# These are auxilary functions
#


dmattek's avatar
dmattek committed
9
require(ggplot2)
dmattek's avatar
Mod:  
dmattek committed
10 11 12
require(RColorBrewer)
require(gplots) # for heatmap.2
require(grid) # for modifying grob
dmattek's avatar
dmattek committed
13
require(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15 16 17 18 19 20 21 22 23 24 25 26

# Global parameters ----
# font sizes in pts for plots
PLOTFONTBASE = 12
PLOTFONTAXISTEXT = 12
PLOTFONTAXISTITLE = 12
PLOTFONTFACETSTRIP = 14
PLOTFONTLEGEND = 12

# default number of facets in plots
PLOTNFACETDEFAULT = 3

dmattek's avatar
dmattek committed
27
# Colour definitions ----
dmattek's avatar
dmattek committed
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

53
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
54 55 56 57 58 59 60 61 62 63
l.col.pal = list(
  "White-Orange-Red" = 'OrRd',
  "Yellow-Orange-Red" = 'YlOrRd',
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
  "Blues" = "Blues",
  "Spectral" = 'Spectral'
)

64 65 66 67 68 69 70 71 72 73
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
# Clustering algorithms ----

s.cl.linkage = c("ward.D",
                 "ward.D2",
                 "single",
                 "complete",
                 "average",
                 "mcquitty",
                 "centroid")

s.cl.spar.linkage = c("average",
                      "complete", 
                      "single",
                      "centroid")

s.cl.diss = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "DTW")
s.cl.spar.diss = c("squared.distance","absolute.value")


# Help text ----
dmattek's avatar
Added:  
dmattek committed
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
# Creates a popup with help text
# From: https://gist.github.com/jcheng5/5913297
helpPopup <- function(title, content,
                      placement=c('right', 'top', 'left', 'bottom'),
                      trigger=c('click', 'hover', 'focus', 'manual')) {
  tagList(
    singleton(
      tags$head(
        tags$script("$(function() { $(\"[data-toggle='popover']\").popover(); })")
      )
    ),
    tags$a(
      href = "#", class = "btn btn-mini", `data-toggle` = "popover",
      title = title, `data-content` = content, `data-animation` = TRUE,
      `data-placement` = match.arg(placement, several.ok=TRUE)[1],
      `data-trigger` = match.arg(trigger, several.ok=TRUE)[1],
      #tags$i(class="icon-question-sign")
      # changed based on http://stackoverflow.com/questions/30436013/info-bubble-text-in-a-shiny-interface
      icon("question")
    )
  )
}

help.text = c(
  'Accepts CSV file with a column of cell IDs for removal. 
                   IDs should correspond to those used for plotting. 
  Say, the main data file contains columns Metadata_Site and TrackLabel. 
  These two columns should be then selected in UI to form a unique cell ID, e.g. 001_0001 where former part corresponds to Metadata_Site and the latter to TrackLabel.',
  'Plotting and data processing requires a unique cell ID across entire dataset. A typical dataset from CellProfiler assigns unique cell ID (TrackLabel) within each field of view (Metadata_Site).
123 124
                   Therefore, a unique ID is created by concatenating these two columns. If the dataset already contains a unique ID, UNcheck this box and select a single column only.',
  'This option allows to interpolate NAs or missing data. Some rows in the input file might be missing because a particular time point might not had been acquired. 
125
  This option, interpolates such missing points as well as points with NAs in the measurement column. When this option is checked, the interval of time column must be provided!',
dmattek's avatar
dmattek committed
126
  'Accepts CSV file with 5 columns: grouping (e.g. condition), start and end time points of stimulation, start and end points of y-position, dummy column with id.'
dmattek's avatar
Added:  
dmattek committed
127 128
)

dmattek's avatar
dmattek committed
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
LOCcalcTrajCI = function(in.dt, in.col.meas, in.col.by = NULL, in.type = c('normal', 'boot'), ...) {
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by] else
      loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
    
    return(loc.dt)
}

#' Generate synthetic CellProfiler output with single cell time series
#'
#'
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

LOCgenTraj <- function(in.ntpts = 60, in.ntracks = 10, in.nfov = 6, in.nwells = 1, in.addna = NULL) {
  
  x.rand.1 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,   1, 0.2), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,  2, 0.5))
  x.rand.2 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.25, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.2),  rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 1, 0.2))
  
  # add NA's for testing
  if (!is.null(in.addna)) {
    locTabLen = length(x.rand.1)
    x.rand.1[round(runif(in.addna) * locTabLen)] = NA
    x.rand.2[round(runif(in.addna) * locTabLen)] = NA
  }
  
  x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
  
  dt.nuc = data.table(Metadata_Well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
                      Metadata_Site = rep(1:in.nfov, each = in.ntpts * in.ntracks),
                      Metadata_RealTime = x.arg,
                      objCyto_Intensity_MeanIntensity_imErkCor = x.rand.1,
                      objNuc_Intensity_MeanIntensity_imErkCor  = x.rand.2,
                      objNuc_Location_X = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      objNuc_Location_Y = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      TrackLabel = rep(1:(in.ntracks*in.nfov), each = in.ntpts))
  
  return(dt.nuc)
}

#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
                    in.meas.col,
                    in.rt.col = 'RealTime',
                    in.rt.min = 10,
                    in.rt.max = 20,
                    in.by.cols = NULL,
                    in.robust = TRUE,
                    in.type = 'z.score') {
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


dmattek's avatar
Added:  
dmattek committed
275

dmattek's avatar
dmattek committed
276
# Functions for clustering ----
dmattek's avatar
dmattek committed
277 278 279 280 281 282 283 284 285

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:  
dmattek committed
286 287
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
288 289 290 291 292 293 294 295
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = names(loc.m),
                         cl = loc.m)
  
296 297
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
298
  return(loc.dt.cl)
dmattek's avatar
Added:  
dmattek committed
299 300
}

dmattek's avatar
dmattek committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
320 321
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
322 323 324 325 326
  return(loc.dt.cl)
}



dmattek's avatar
Added:  
dmattek committed
327 328 329 330 331 332 333 334 335 336 337 338 339
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
    data.table(cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
               cl.col = loc.col_labels)))
}


dmattek's avatar
dmattek committed
340
# Custom plotting functions ----
dmattek's avatar
dmattek committed
341

dmattek's avatar
dmattek committed
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
                       in.font.axis.text = 12,
                       in.font.axis.title = 12,
                       in.font.strip = 14,
                       in.font.legend = 12) {
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"))
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
381 382
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
383
LOCrotatedAxisElementText = function(angle, position='x', size = 12){
dmattek's avatar
dmattek committed
384 385 386 387 388 389 390 391 392 393 394 395 396
  angle     = angle[1]; 
  position  = position[1]
  positions = list(x=0, y=90, top=180, right=270)
  if(!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]",paste(names(positions),collapse=", ")), call.=FALSE)
  if(!is.numeric(angle))
    stop("'angle' must be numeric",call.=FALSE)
  rads = (-angle - positions[[ position ]])*pi/180
  hjust = round((1 - sin(rads)))/2
  vjust = round((1 + cos(rads)))/2
  element_text(size = 12, angle = angle, vjust = vjust, hjust = hjust)
}

397 398
# Plot individual time series
LOCplotTraj = function(dt.arg, # input data table
dmattek's avatar
Mod:  
dmattek committed
399 400 401 402 403 404 405 406 407 408 409
                        x.arg,  # string with column name for x-axis
                        y.arg, # string with column name for y-axis
                        group.arg, # string with column name for grouping time series (typicaly cell ID)
                        facet.arg, # string with column name for facetting
                        facet.ncol.arg = 2, # default number of facet columns
                        facet.color.arg = NULL, # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                        line.col.arg = NULL, # string with column name for colouring time series (typically when individual time series are selected in UI)
                        xlab.arg = NULL, # string with x-axis label
                        ylab.arg = NULL, # string with y-axis label
                        plotlab.arg = NULL, # string with plot label
                        dt.stim.arg = NULL, # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
410 411
                        x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                        y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
dmattek's avatar
dmattek committed
412
                        tfreq.arg = 1,
dmattek's avatar
dmattek committed
413
                        ylim.arg = NULL,
dmattek's avatar
Added:  
dmattek committed
414
                        stim.bar.width.arg = 0.5,
dmattek's avatar
Mod:  
dmattek committed
415
                        aux.label1 = NULL, # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
dmattek's avatar
Added:  
dmattek committed
416
                        aux.label2 = NULL,
417
                        aux.label3 = NULL,
dmattek's avatar
Added:  
dmattek committed
418 419 420 421 422
                        stat.arg = c('', 'mean', 'CI', 'SE')) {
  
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)

dmattek's avatar
Added:  
dmattek committed
423 424
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
425 426
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
427
                            y = y.arg,
dmattek's avatar
Added:  
dmattek committed
428
                            group = group.arg,
429 430 431 432 433
                            label = group.arg))
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
434
  
dmattek's avatar
dmattek committed
435 436 437 438 439 440 441 442 443 444 445 446 447
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
Mod:  
dmattek committed
448 449 450 451 452 453 454 455 456 457

  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {

    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:  
dmattek committed
458 459
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:  
dmattek committed
460 461 462 463 464
    p.tmp = p.tmp +
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
465
  
dmattek's avatar
Added:  
dmattek committed
466 467
  if ('mean' %in% loc.stat)
    p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
468 469 470
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.y = mean,
dmattek's avatar
Added:  
dmattek committed
471
      colour = 'red',
dmattek's avatar
dmattek committed
472 473 474 475
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:  
dmattek committed
476 477 478 479 480 481 482 483
    )

  if ('CI' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
      colour = 'red',
dmattek's avatar
Mod:  
dmattek committed
484
      alpha = 0.25,
dmattek's avatar
Added:  
dmattek committed
485 486 487 488 489 490 491 492 493 494
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
      colour = 'red',
dmattek's avatar
Mod:  
dmattek committed
495
      alpha = 0.25,
dmattek's avatar
Added:  
dmattek committed
496 497 498 499 500 501 502
      geom = "ribbon",
      group = 1
    )
  
  
  
  p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
503 504 505
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
506 507 508 509

  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
510 511
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
512 513 514 515 516
                                 aes_string(x = x.stim.arg[1],
                                            xend = x.stim.arg[2],
                                            y = y.stim.arg[1],
                                            yend = y.stim.arg[2],
                                            group = 'group'),
dmattek's avatar
dmattek committed
517
                                 colour = rhg_cols[[3]],
518
                                 size = stim.bar.width.arg) 
dmattek's avatar
dmattek committed
519 520
  }
  
dmattek's avatar
dmattek committed
521 522 523
  if (!is.null(ylim.arg)) 
    p.tmp = p.tmp + coord_cartesian(ylim = ylim.arg)
  
dmattek's avatar
dmattek committed
524 525 526 527
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
528 529 530 531 532
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
533
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
534
  
dmattek's avatar
Mod:  
dmattek committed
535
  return(p.tmp)
dmattek's avatar
dmattek committed
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
# Plot average time series with CI together in one facet
LOCplotTrajRibbon = function(dt.arg, # input data table
                          x.arg, # string with column name for x-axis
                          y.arg, # string with column name for y-axis
                          group.arg = NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                          col.arg = NULL, # colour pallette for individual time series
                          dt.stim.arg = NULL, # data table with stimulation pattern
                          x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                          y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
                          stim.bar.width.arg = 0.5,
                          ribbon.lohi.arg = c('Lower', 'Upper'),
                          ribbon.fill.arg = 'grey50',
                          ribbon.alpha.arg = 0.5,
                          xlab.arg = NULL,
                          ylab.arg = NULL,
                          plotlab.arg = NULL) {
  
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg)) +
    geom_ribbon(aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
                fill = ribbon.fill.arg,
                alpha = ribbon.alpha.arg) +
    geom_line(aes_string(y = y.arg, colour = group.arg))
  
dmattek's avatar
dmattek committed
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes_string(x = x.stim.arg[1],
                                     xend = x.stim.arg[2],
                                     y = y.stim.arg[1],
                                     yend = y.stim.arg[2]),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }

  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
593 594 595
}


596

dmattek's avatar
dmattek committed
597 598 599 600 601 602 603 604
# Plots a scatter plot with marginal histograms
# Points are connected by a line (grouping by cellID)
#
# Assumes an input of data.table with
# x, y - columns with x and y coordinates
# id - a unique point identifier (here corresponds to cellID)
# mid - a (0,1) column by which points are coloured (here corresponds to whether cells are within bounds)

dmattek's avatar
dmattek committed
605
LOCggplotScat = function(dt.arg,
dmattek's avatar
dmattek committed
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
                        band.arg = NULL,
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
                        group.col.arg = NULL) {
  p.tmp = ggplot(dt.arg, aes(x = x, y = y))
  
  if (is.null(group.col.arg)) {
    p.tmp = p.tmp +
      geom_point(alpha = alpha.arg, aes(group = id))
  } else {
    p.tmp = p.tmp +
      geom_point(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      geom_path(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      scale_color_manual(name = group.col.arg, values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green'))
  }
  
  if (is.null(band.arg))
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
629 630 631
        # method = function(formula, data, weights = weight)
        #   rlm(formula, data, weights = weight, method = 'MM'),
        method = "lm",
dmattek's avatar
dmattek committed
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        fullrange = FALSE,
        level = 0.95,
        colour = 'blue'
      )
  else {
    p.tmp = p.tmp +
      geom_abline(slope = band.arg$a, intercept = band.arg$b) +
      geom_abline(
        slope = band.arg$a,
        intercept =  band.arg$b + abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      ) +
      geom_abline(
        slope = band.arg$a,
        intercept = band.arg$b - abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      )
  }
  
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  
  
  p.tmp = p.tmp +
674 675 676 677 678
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
679 680
    theme(legend.position = "none")

dmattek's avatar
dmattek committed
681 682 683 684 685 686
  # Marginal distributions don;t work with plotly...
  # if (is.null(facet.arg))
  #   ggExtra::ggMarginal(p.scat, type = "histogram",  bins = 100)
  # else
  return(p.tmp)
}
dmattek's avatar
dmattek committed
687

688

dmattek's avatar
dmattek committed
689
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
Mod:  
dmattek committed
690 691 692 693 694 695 696 697 698 699 700 701
                          dend.arg,
                          palette.arg,
                          palette.rev.arg = TRUE,
                          dend.show.arg = TRUE,
                          key.show.arg = TRUE,
                          margin.x.arg = 5,
                          margin.y.arg = 20,
                          nacol.arg = 0.5,
                          colCol.arg = NULL,
                          labCol.arg = NULL,
                          font.row.arg = 1,
                          font.col.arg = 1,
702
                          breaks.arg = NULL,
dmattek's avatar
Mod:  
dmattek committed
703 704
                          title.arg = 'Clustering') {
  
705 706
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:  
dmattek committed
707 708
  if (palette.rev.arg)
    my_palette <-
709
    rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:  
dmattek committed
710 711
  else
    my_palette <-
712
    colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:  
dmattek committed
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
748 749
    main = title.arg,
    symbreaks = FALSE,
750 751
    symkey = FALSE,
    breaks = if (is.null(breaks.arg)) NULL else seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks+1)
dmattek's avatar
Mod:  
dmattek committed
752 753 754 755
  )
  
  return(loc.p)
}