server.R 22.9 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
dmattek's avatar
Mod:    
dmattek committed
18
library(colorspace) # for palettes (ised to colour dendrogram)
dmattek's avatar
dmattek committed
19
20
21
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
22
23
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
24

25
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
26
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
27

dmattek's avatar
dmattek committed
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
32
33
34
35
36
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:    
dmattek committed
37
38
    dataLoadNuc  = isolate(input$inButLoadNuc),
    dataLoadTrajRem = isolate(input$inButLoadTrajRem)
39
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40
41
  )
  
dmattek's avatar
dmattek committed
42
43
44
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
45
  # FILE LOAD
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
73
74
75
76
77
78
79
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
Added:    
dmattek committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

  # load main data file
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
113
114
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'rack'][1] # index 1 at the end in case more matches; select 1st
    
    selectInput(
      'inSelTrackLabel',
      'Select Track Label (e.g. objNuc_Track_ObjectsLabel):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'RealTime'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
      'Select time column (e.g. RealTime):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
        locColSel = locCols[locCols %like% 'ite']
        if (length(locColSel) == 0)
          locColSel = locCols[locCols %like% 'eries'][1] # index 1 at the end in case more matches; select 1st
        else if (length(locColSel) > 1) {
          locColSel = locColSel[1]
        }
        #    cat('UI varSelGroup::locColSel ', locColSel, '\n')
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
171
172
173
174
175
176
177
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
dmattek's avatar
Added:    
dmattek committed
178
179
180
181
182
183
184
185
186
187
188
189
    if (!input$chBtrackUni) {
      locCols = getDataNucCols()
      locColSel = locCols[locCols %like% 'ite'][1] # index 1 at the end in case more matches; select 1st
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
190
191
192
193
194
195
196
197
198
199
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
dmattek's avatar
dmattek committed
200
201
      locColSel = locCols[locCols %like% 'objCyto_Intensity_MeanIntensity_imErkCor.*' |
                            locCols %like% 'Ratio'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
202

dmattek's avatar
dmattek committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
      locColSel = locCols[locCols %like% 'objNuc_Intensity_MeanIntensity_imErkCor.*'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
221

dmattek's avatar
dmattek committed
222
223
224
225
226
227
228
229
230
231
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
256
  
dmattek's avatar
dmattek committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
288
289
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
309
310
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
311
312
313
314
    }
  })
  
  
dmattek's avatar
dmattek committed
315
316
317
318
319
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
320
      
dmattek's avatar
dmattek committed
321
322
323
324
325
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
326
        value = 99.5, 
dmattek's avatar
dmattek committed
327
328
        step = 0.1
      )
dmattek's avatar
dmattek committed
329
      
dmattek's avatar
Mod:    
dmattek committed
330
      
dmattek's avatar
dmattek committed
331
332
333
    }
  })
  
dmattek's avatar
dmattek committed
334
335
336
337
338
339
340
341
342
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
343
  
dmattek's avatar
dmattek committed
344
345
346
347
348
349
350
351
352
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
402
  getDataNucCols <- reactive({
403
404
405
406
407
408
409
410
411
412
413
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
414
    cat(file = stderr(), 'dataMod\n')
415
416
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
417
    if (is.null(loc.dt))
418
419
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    if (!input$chBtrackUni) {
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
440
    } else {
dmattek's avatar
Added:    
dmattek committed
441
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
442
443
    }
    
dmattek's avatar
dmattek committed
444
    
dmattek's avatar
Added:    
dmattek committed
445
446
447
448
449
450
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
451
452
453
      
      
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
454
455
    }
    
456
457
458
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
459
460
461
462
463
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
464
    
dmattek's avatar
dmattek committed
465
466
467
468
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
469
470
  })
  
dmattek's avatar
Mod:    
dmattek committed
471
  
dmattek's avatar
dmattek committed
472
473
474
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
475
476
477
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
478
    
dmattek's avatar
dmattek committed
479
480
481
482
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
483
484
  })
  
dmattek's avatar
dmattek committed
485
  
486
487
488
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
489
  #    realtime - selected from input
dmattek's avatar
dmattek committed
490
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
491
  #               (can be a single column or result of an operation on two cols)
492
493
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
494
495
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
496
497
498
499
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
500
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
501
    cat(file = stderr(), 'data4trajPlot\n')
502
503
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
504
    if (is.null(loc.dt))
505
506
      return(NULL)
    
507
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
508
    if (input$inSelMath == '')
509
510
511
512
513
514
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
515
    # create expression for 'group' column
516
517
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
518
519
520
521
522
523
524
525
526
527
528
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
529
    
dmattek's avatar
dmattek committed
530
531

    # column name with time
532
533
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
534
535
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
536
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
537
    
dmattek's avatar
Added:    
dmattek committed
538
539
    
    # Find column names with position
dmattek's avatar
Mod:    
dmattek committed
540
541
    loc.s.pos.x = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*X') | names(loc.dt) %like% c('.*os.x')]
    loc.s.pos.y = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*Y') | names(loc.dt) %like% c('.*os.y')]
dmattek's avatar
Added:    
dmattek committed
542
543
544
545
546
547
    
    if (length(loc.s.pos.x) == 1 & length(loc.s.pos.y) == 1)
      locPos = TRUE
    else
      locPos = FALSE
    
548
549
550
551
552
553
554
555
556
557
558
559
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
    loc.s.objnum = names(loc.dt)[names(loc.dt) %like% c('ObjectNumber')]

    if (length(loc.s.objnum) == 1)
      locObjNum = TRUE
    else
      locObjNum = FALSE
    
    
560
561
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
604
        # add a column with status of track selection
605
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
606
    }
607
      
dmattek's avatar
dmattek committed
608

609
610
611
612
613
614
    ## Interpolate NA's and data points not include
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
    # Tracks are interpolated only within min and max realtime of every cell id
    setkey(loc.out, group, id, realtime)
    loc.out = loc.out[setkey(loc.out[, .(min(realtime):max(realtime)), by = .(group, id)], group, id, V1)]

dmattek's avatar
dmattek committed
615
616
617
618
619
620
621
    # x-check: print all rows with NA's
    print('Rows with NAs:')
    print(loc.out[rowSums(is.na(loc.out)) > 0, ])
    
    # Merge will create NA's where a realtime is missing.
    # Also, NA's may be already present in the dataset'.
    # Interpolate (linear) them with na.interpolate
622
    if(locPos)
dmattek's avatar
dmattek committed
623
      s.cols = c('y', 'pos.x', 'pos.y')
624
    else
dmattek's avatar
dmattek committed
625
      s.cols = c('y')
626
627
    
    loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
dmattek's avatar
dmattek committed
628
629
630
631
632
633
634
635
636
637
638
639
    

    # !!! Current issue with interpolation:
    # The column mid.in is not taken into account.
    # If a trajectory is selected in the UI,
    # the mid.in column is added (if it doesn't already exist in the dataset),
    # and for the interpolated point, it will still be NA. Not really an issue.
    #
    # Also, think about the current option of having mid.in column in the uploaded dataset.
    # Keep it? Expand it?
    # Create a UI filed for selecting the column with mid.in data.
    # What to do with that column during interpolation (see above)
dmattek's avatar
Mod:    
dmattek committed
640
    
641
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
642
643
644
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
645
    
646
    ## Normalization
dmattek's avatar
dmattek committed
647
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
648
649
650
651
652
653
654
655
656
657
658
659
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
660
661
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
662
663
664
665
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
666
667
668
669
670
671
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
689
    
dmattek's avatar
dmattek committed
690
    return(loc.out)
dmattek's avatar
dmattek committed
691
692
  })
  
dmattek's avatar
dmattek committed
693
694
695
696
697
698
699
700
701
702
703
704
705
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
706
    #print(loc.dt)
dmattek's avatar
dmattek committed
707
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
708
    #print(loc.out)
dmattek's avatar
dmattek committed
709
710
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
711
    
dmattek's avatar
dmattek committed
712
713
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
714
715
716
717
718
719
720
    
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
    loc.out = t(na.interpolation(t(loc.out)))
    
dmattek's avatar
dmattek committed
721
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
722
  }) 
dmattek's avatar
dmattek committed
723
  
dmattek's avatar
dmattek committed
724
  
dmattek's avatar
Added:    
dmattek committed
725
726
727
728
729
730
731
732
733
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
734
  
dmattek's avatar
dmattek committed
735
736
737
738
  ####
  ## UI for trajectory plot
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
739
    
dmattek's avatar
dmattek committed
740
741
742
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
743
    
dmattek's avatar
dmattek committed
744
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
745
    if (!is.null(loc.v)) {
746
      selectInput(
dmattek's avatar
dmattek committed
747
748
749
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
750
        width = '100%',
dmattek's avatar
dmattek committed
751
        multiple = TRUE
752
      )
dmattek's avatar
dmattek committed
753
754
755
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
756
  ###### Trajectory plotting
dmattek's avatar
Mod:    
dmattek committed
757
  callModule(modTrajPlot, 'modTrajPlot', data4trajPlot)
dmattek's avatar
dmattek committed
758
  
dmattek's avatar
Added:    
dmattek committed
759
760
761
  ###### AUC caluclation and plotting
  callModule(modAUCplot, 'tabAUC', data4trajPlot)
  
dmattek's avatar
Added:    
dmattek committed
762
763
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
764
  
dmattek's avatar
dmattek committed
765
766
  
  
dmattek's avatar
dmattek committed
767
768
769
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
770
  ##### Hierarchical clustering
dmattek's avatar
Added:    
dmattek committed
771
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
772
773
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
Added:    
dmattek committed
774
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
775

dmattek's avatar
Mod:    
dmattek committed
776
  
dmattek's avatar
dmattek committed
777
})