server.R 20.8 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
dmattek's avatar
Mod:    
dmattek committed
18
library(colorspace) # for palettes (ised to colour dendrogram)
dmattek's avatar
dmattek committed
19
20
21
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
22
23
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
24

25
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
26
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
27

dmattek's avatar
dmattek committed
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
32
33
34
35
36
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:    
dmattek committed
37
38
    dataLoadNuc  = isolate(input$inButLoadNuc),
    dataLoadTrajRem = isolate(input$inButLoadTrajRem)
39
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40
41
  )
  
dmattek's avatar
dmattek committed
42
43
44
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
45
  # FILE LOAD
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
73
74
75
76
77
78
79
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
Added:    
dmattek committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

  # load main data file
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
113
114
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'rack'][1] # index 1 at the end in case more matches; select 1st
    
    selectInput(
      'inSelTrackLabel',
      'Select Track Label (e.g. objNuc_Track_ObjectsLabel):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'RealTime'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
      'Select time column (e.g. RealTime):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
      locColSel = locCols[locCols %like% 'ite']
      if (length(locColSel) == 0)
        locColSel = locCols[locCols %like% 'eries'][1] # index 1 at the end in case more matches; select 1st
      else if (length(locColSel) > 1) {
        locColSel = locColSel[1]
      }
      #    cat('UI varSelGroup::locColSel ', locColSel, '\n')
      selectInput(
        'inSelGroup',
        'Select one or more facet groupings (e.g. Site, Well, Channel):',
        locCols,
        width = '100%',
        selected = locColSel,
        multiple = TRUE
      )
    }
    
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
dmattek's avatar
Added:    
dmattek committed
175
176
177
178
179
180
181
182
183
184
185
186
    if (!input$chBtrackUni) {
      locCols = getDataNucCols()
      locColSel = locCols[locCols %like% 'ite'][1] # index 1 at the end in case more matches; select 1st
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
187
188
189
190
191
192
193
194
195
196
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
dmattek's avatar
dmattek committed
197
198
      locColSel = locCols[locCols %like% 'objCyto_Intensity_MeanIntensity_imErkCor.*' |
                            locCols %like% 'Ratio'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
199

dmattek's avatar
dmattek committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
      locColSel = locCols[locCols %like% 'objNuc_Intensity_MeanIntensity_imErkCor.*'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
218

dmattek's avatar
dmattek committed
219
220
221
222
223
224
225
226
227
228
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
253
  
dmattek's avatar
dmattek committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
285
286
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
306
307
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
308
309
310
311
    }
  })
  
  
dmattek's avatar
dmattek committed
312
313
314
315
316
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
317
      
dmattek's avatar
dmattek committed
318
319
320
321
322
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
323
        value = 99.5, 
dmattek's avatar
dmattek committed
324
325
        step = 0.1
      )
dmattek's avatar
dmattek committed
326
      
dmattek's avatar
Mod:    
dmattek committed
327
      
dmattek's avatar
dmattek committed
328
329
330
    }
  })
  
dmattek's avatar
dmattek committed
331
332
333
334
335
336
337
338
339
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
340
  
dmattek's avatar
dmattek committed
341
342
343
344
345
346
347
348
349
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
399
  getDataNucCols <- reactive({
400
401
402
403
404
405
406
407
408
409
410
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
411
    cat(file = stderr(), 'dataMod\n')
412
413
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
414
    if (is.null(loc.dt))
415
416
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    if (!input$chBtrackUni) {
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
437
    } else {
dmattek's avatar
Added:    
dmattek committed
438
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
439
440
    }
    
dmattek's avatar
dmattek committed
441
    
dmattek's avatar
Added:    
dmattek committed
442
443
444
445
446
447
448
449
450
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem$id)]
    }
    
451
452
453
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
454
455
456
457
458
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
459
    
dmattek's avatar
dmattek committed
460
461
462
463
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
464
465
  })
  
dmattek's avatar
Mod:    
dmattek committed
466
  
dmattek's avatar
dmattek committed
467
468
469
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
470
471
472
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
473
    
dmattek's avatar
dmattek committed
474
475
476
477
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
478
479
  })
  
dmattek's avatar
dmattek committed
480
  
481
482
483
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
484
  #    realtime - selected from input
dmattek's avatar
dmattek committed
485
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
486
487
488
489
490
  #               (can be a single column or result of an operation on two cols)
  #    id       - trackObjectsLabelUni (created in dataMod)
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
  #               highlight status from UI
491
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
492
    cat(file = stderr(), 'data4trajPlot\n')
493
494
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
495
    if (is.null(loc.dt))
496
497
498
      return(NULL)
    
    
dmattek's avatar
dmattek committed
499
    if (input$inSelMath == '')
500
501
502
503
504
505
506
507
508
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
    # create expression for parsing
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
509
510
511
512
    if(length(input$inSelGroup) == 0)
      return(NULL)
    loc.s.gr = sprintf("paste(%s, sep=';')",
                       paste(input$inSelGroup, sep = '', collapse = ','))
513
514
515
    
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
516
517
518
519
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
    locBut = input$chBhighlightTraj
    
dmattek's avatar
Added:    
dmattek committed
520
521
    
    # Find column names with position
dmattek's avatar
Mod:    
dmattek committed
522
523
    loc.s.pos.x = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*X') | names(loc.dt) %like% c('.*os.x')]
    loc.s.pos.y = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*Y') | names(loc.dt) %like% c('.*os.y')]
dmattek's avatar
Added:    
dmattek committed
524
525
526
527
528
529
    
    if (length(loc.s.pos.x) == 1 & length(loc.s.pos.y) == 1)
      locPos = TRUE
    else
      locPos = FALSE
    
530
531
532
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
    if (sum(names(loc.dt) %in% 'mid.in') > 0) {
dmattek's avatar
Added:    
dmattek committed
533
534
535
536
537
538
      if (locPos) # position columns present
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
          realtime = eval(parse(text = loc.s.rt)),
dmattek's avatar
Mod:    
dmattek committed
539
540
          pos.x = get(loc.s.pos.x),
          pos.y = get(loc.s.pos.y),
dmattek's avatar
Added:    
dmattek committed
541
          mid.in = mid.in
dmattek's avatar
Mod:    
dmattek committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        )] else
          loc.out = loc.dt[, .(
            y = eval(parse(text = loc.s.y)),
            id = trackObjectsLabelUni,
            group = eval(parse(text = loc.s.gr)),
            realtime = eval(parse(text = loc.s.rt)),
            mid.in = mid.in
          )]
        
        
        
        
        # add 3rd level with status of track selection
        # to a column with trajectory filtering status
        if (locBut) {
          loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
        }
        
560
    } else {
dmattek's avatar
Added:    
dmattek committed
561
562
563
564
565
      if (locPos) # position columns present
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
dmattek's avatar
Mod:    
dmattek committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
          realtime = eval(parse(text = loc.s.rt)),
          pos.x = get(loc.s.pos.x),
          pos.y = get(loc.s.pos.y)
        )] else
          loc.out = loc.dt[, .(
            y = eval(parse(text = loc.s.y)),
            id = trackObjectsLabelUni,
            group = eval(parse(text = loc.s.gr)),
            realtime = eval(parse(text = loc.s.rt))
          )]
        
        
        # add a column with status of track selection
        if (locBut) {
          loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
        }
582
    }
583
    
dmattek's avatar
Added:    
dmattek committed
584
585
    # add XY location if present in the dataset
    
dmattek's avatar
Added:    
dmattek committed
586
587
588
589
590
591
    # remove NAs 
    # (doesn't make sense to remove here anyway; 
    # NA's are already removed in tCourseSelected.csv
    # Such datapoints are missing, therefore they require interpolation.
    # If a row of long-format dt is removed, an NA appears after casting anyway if that grid point is missing)
    # Remove NAs in data4clust()
dmattek's avatar
dmattek committed
592
    loc.out = loc.out[complete.cases(loc.out)]
dmattek's avatar
Mod:    
dmattek committed
593
    
dmattek's avatar
dmattek committed
594
595
596
597
    # Trim x-axis (time)
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
598
599
    
    # Normalization
dmattek's avatar
dmattek committed
600
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
601
602
603
604
605
606
607
608
609
610
611
612
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
613
614
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
615
616
617
618
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
619
620
621
622
623
624
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
642
    
dmattek's avatar
dmattek committed
643
    return(loc.out)
dmattek's avatar
dmattek committed
644
645
  })
  
dmattek's avatar
dmattek committed
646
647
648
649
650
651
652
653
654
655
656
657
658
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
659
    #print(loc.dt)
dmattek's avatar
dmattek committed
660
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
661
    #print(loc.out)
dmattek's avatar
dmattek committed
662
663
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
664
    
dmattek's avatar
dmattek committed
665
666
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
667
668
669
670
671
672
673
    
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
    loc.out = t(na.interpolation(t(loc.out)))
    
dmattek's avatar
dmattek committed
674
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
675
  }) 
dmattek's avatar
dmattek committed
676
  
dmattek's avatar
dmattek committed
677
  
dmattek's avatar
Added:    
dmattek committed
678
679
680
681
682
683
684
685
686
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
687
  
dmattek's avatar
dmattek committed
688
689
690
691
  ####
  ## UI for trajectory plot
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
692
    
dmattek's avatar
dmattek committed
693
694
695
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
696
    
dmattek's avatar
dmattek committed
697
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
698
    if (!is.null(loc.v)) {
699
      selectInput(
dmattek's avatar
dmattek committed
700
701
702
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
703
        width = '100%',
dmattek's avatar
dmattek committed
704
        multiple = TRUE
705
      )
dmattek's avatar
dmattek committed
706
707
708
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
709
  ###### Trajectory plotting
dmattek's avatar
Mod:    
dmattek committed
710
  callModule(modTrajPlot, 'modTrajPlot', data4trajPlot)
dmattek's avatar
dmattek committed
711
  
dmattek's avatar
Added:    
dmattek committed
712
713
714
  ###### AUC caluclation and plotting
  callModule(modAUCplot, 'tabAUC', data4trajPlot)
  
dmattek's avatar
Added:    
dmattek committed
715
716
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
717
  
dmattek's avatar
dmattek committed
718
719
  
  
dmattek's avatar
dmattek committed
720
721
722
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
723
  ##### Hierarchical clustering
dmattek's avatar
Added:    
dmattek committed
724
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
725
726
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
Added:    
dmattek committed
727
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
728

dmattek's avatar
Mod:    
dmattek committed
729
  
dmattek's avatar
dmattek committed
730
})