tabClHierSpar.R 15 KB
Newer Older
dmattek's avatar
Added:  
dmattek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

# UI
clustHierSparUI <- function(id, label = "Sparse Hierarchical CLustering") {
  ns <- NS(id)
  
  tagList(
    br(),
    fluidRow(
      column(
        4,
        selectInput(
          ns("selectPlotHierSparLinkage"),
          label = ("Select linkage method:"),
          choices = list(
            "Average" = 1,
            "Complete" = 2,
            "Single" = 3,
            "Centroid" = 4
          ),
          selected = 1
        ),
        selectInput(
          ns("selectPlotHierSparDiss"),
          label = ("Select type of dissimilarity measure:"),
          choices = list("Squared Distance" = 1,
                         "Absolute Value" = 2),
          selected = 1
        )
      ),
      
      column(
        4,
        sliderInput(
          ns('inPlotHierSparNclust'),
          '#dendrogram branches to colour',
          min = 1,
          max = 20,
          value = 1,
          step = 1,
          ticks = TRUE,
          round = TRUE
        ),
        checkboxInput(ns('chBPlotHierSparClSel'), 'Manually select clusters to display'),
        uiOutput(ns('uiPlotHierSparClSel')),
        downloadButton(ns('downCellClSpar'), 'Download CSV with cell IDs and cluster no.')
      ),
      
      column(
        4,
        checkboxInput(ns('inHierSparAdv'),
                      'Advanced options',
                      FALSE),
        uiOutput(ns('uiPlotHierSparNperms')),
        uiOutput(ns('uiPlotHierSparNiter'))
      )
    ),
    
    
    br(),

    tabsetPanel(
      tabPanel('Heat-map',
               fluidRow(
                 column(3,
                        checkboxInput(ns('selectPlotHierSparDend'), 'Plot dendrogram and re-order samples', TRUE),
                        selectInput(
                          ns("selectPlotHierSparPalette"),
                          label = "Select colour palette:",
                          choices = l.col.pal,
                          selected = 'Spectral'
                        ),
                        checkboxInput(ns('inPlotHierSparRevPalette'), 'Reverse colour palette', TRUE),
                        checkboxInput(ns('selectPlotHierSparKey'), 'Plot colour key', TRUE)
                 ),
                 column(3,
                        sliderInput(
                          ns('inPlotHierSparNAcolor'),
                          'Shade of grey for NA values (0 - black, 1 - white)',
                          min = 0,
                          max = 1,
                          value = 0.8,
                          step = .1,
                          ticks = TRUE
                        ),
                        numericInput(ns('inPlotHierSparHeatMapHeight'), 
                                     'Display plot height [px]', 
                                     value = 600, 
                                     min = 100,
                                     step = 100)
                 ),
                 column(6,
                        br(),
                        h4(
                          "Sparse hierarchical clustering using ",
                          a("sparcl", href = "https://cran.r-project.org/web/packages/sparcl/")
                        ),
                        p(
                          'Column labels in the heat-map are additionally labeld according to their \"importance\":'
                        ),
                        tags$ol(
                          tags$li("Black - not taken into account"),
                          tags$li("Blue with \"*\" - low importance (weight factor in (0, 0.1]"),
                          tags$li("Green with \"**\" - medium importance (weight factor in (0.1, 0.5]"),
                          tags$li("Red with \"***\" - high importance (weight factor in (0.5, 1.0]")
                        )
                 )
               ),
               
               fluidRow(
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparMarginX'),
                     'Margin below x-axis',
                     5,
                     min = 1,
                     width = 100
                   )
                 ),
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparMarginY'),
                     'Margin right of y-axis',
                     20,
                     min = 1,
                     width = 100
                   )
                 ),
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparFontX'),
                     'Font size row labels',
                     1,
                     min = 0,
                     width = 100,
                     step = 0.1
                   )
                 ),
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparFontY'),
                     'Font size column labels',
                     1,
                     min = 0,
                     width = 100,
                     step = 0.1
                   )
                 )
               ),
               br(),
               
               
               downPlotUI(ns('downPlotHierSparHM'), "Download PDF"),
               
               actionButton(ns('butPlotHierSparHeatMap'), 'Plot!'),
               plotOutput(ns('outPlotHierSpar'))
      ),

      tabPanel('Time-courses',
               modTrajPlotUI(ns('modPlotHierSparTraj'))),
      tabPanel('Cluster dist.',
               modClDistPlotUI(ns('hierClSparDistPlot')))
    )
  )
}

# SERVER
clustHierSpar <- function(input, output, session, in.data4clust, in.data4trajPlot) {

  # UI for advanced options
  output$uiPlotHierSparNperms = renderUI({
    ns <- session$ns
    if (input$inHierSparAdv)
      sliderInput(
        ns('inPlotHierSparNperms'),
        'Number of permutations',
        min = 1,
        max = 20,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  # UI for advanced options
  output$uiPlotHierSparNiter = renderUI({
    ns <- session$ns

    if (input$inHierSparAdv)
      sliderInput(
        ns('inPlotHierSparNiter'),
        'Number of iterations',
        min = 1,
        max = 50,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  
  output$uiPlotHierSparClSel = renderUI({
    ns <- session$ns

    if(input$chBPlotHierSparClSel) {
      selectInput('inPlotHierSparClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierSparNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })

  
  userFitHierSpar <- reactive({
    cat(file = stderr(), 'userFitHierSpar \n')

    dm.t = in.data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    #cat('rownames: ', rownames(dm.t), '\n')
    
    perm.out <- HierarchicalSparseCluster.permute(
      dm.t,
      wbounds = NULL,
      nperms = ifelse(input$inHierSparAdv, input$inPlotHierSparNperms, 1),
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    
    sparsehc <- HierarchicalSparseCluster(
      dists = perm.out$dists,
      wbound = perm.out$bestw,
      niter = ifelse(input$inHierSparAdv, input$inPlotHierSparNiter, 1),
      method = s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)],
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    return(sparsehc)
  })
  
  
  userFitDendHierSpar <- reactive({
    sparsehc = userFitHierSpar()
    if (is.null(sparsehc)) {
      return()
    }
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, 
                           col = rainbow_hcl,
                           k = input$inPlotHierSparNclust)
    
    return(dend)
  })
  
  # returns table prepared with f-n getClCol
  # for sparse hierarchical clustering
  getClColHierSpar <- reactive({
    cat(file = stderr(), 'getClColHierSpar \n')
    
    loc.dend = userFitDendHierSpar()
    if (is.null(loc.dend))
      return(NULL)
    
    return(getClCol(loc.dend, input$inPlotHierSparNclust))
  })
  

  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni_afterTrim <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni_afterTrim\n')
    loc.dt = in.data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$id))
  })
  
  # return dt with cell IDs and their corresponding condition name
  # The condition is the column defined by facet groupings
  getDataCond <- reactive({
    cat(file = stderr(), 'getDataCond\n')
    loc.dt = in.data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[, .(id, group)]))
    
  })
  
  # prepare data for plotting trajectories per cluster
  # outputs dt as data4trajPlot but with an additional column 'cl' that holds cluster numbers
  # additionally some clusters are omitted according to manual selection
  data4trajPlotClSpar <- reactive({
    cat(file = stderr(), 'data4trajPlotClSpar: in\n')
    
    loc.dt = in.data4trajPlot()
    
    if (is.null(loc.dt)) {
      cat(file = stderr(), 'data4trajPlotClSpar: dt is NULL\n')
      return(NULL)
    }
    
    cat(file = stderr(), 'data4trajPlotClSpar: dt not NULL\n')
    
    # get cellIDs with cluster assignments based on dendrogram cut
    loc.dt.cl = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim())
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
    
    return(loc.dt)    
  })
  
  
  # download a list of cellIDs with cluster assignments
  output$downCellClSpar <- downloadHandler(
    filename = function() {
      paste0('clust_hierchSpar_data_',
             s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
             '_',
             s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  # prepare data for barplot with distribution of items per condition  
  data4clSparDistPlot <- reactive({
    cat(file = stderr(), 'data4clSparDistPlot: in\n')
    
    # get cell IDs with cluster assignments depending on dendrogram cut
    loc.dend <- userFitHierSpar()
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClSparDist: loc.dend is NULL\n')
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(as.dendrogram(loc.dend$hc), k = input$inPlotHierSparNclust))
    
    
    # get cellIDs with condition name
    loc.dt.gr = getDataCond()
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotClSparDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
    return(loc.dt.aggr)
    
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHierSpar <- function() {
    
    loc.dm = in.data4clust()
    if (is.null(loc.dm)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    loc.dend <- userFitDendHierSpar()
    
    loc.colnames = paste0(ifelse(sparsehc$ws == 0, "",
                                 ifelse(
                                   sparsehc$ws <= 0.1,
                                   "* ",
                                   ifelse(sparsehc$ws <= 0.5, "** ", "*** ")
                                 )),  colnames(loc.dm))
    
    loc.colcol   = ifelse(sparsehc$ws == 0,
                          "black",
                          ifelse(
                            sparsehc$ws <= 0.1,
                            "blue",
                            ifelse(sparsehc$ws <= 0.5, "green", "red")
                          ))
    
    loc.p = myPlotHeatmap(loc.dm,
                          loc.dend, 
                          palette.arg = input$selectPlotHierSparPalette, 
                          palette.rev.arg = input$inPlotHierSparRevPalette, 
                          dend.show.arg = input$selectPlotHierSparDend, 
                          key.show.arg = input$selectPlotHierSparKey, 
                          margin.x.arg = input$inPlotHierSparMarginX, 
                          margin.y.arg = input$inPlotHierSparMarginY, 
                          nacol.arg = input$inPlotHierSparNAcolor, 
                          colCol.arg = loc.colcol,
                          labCol.arg = loc.colnames,
                          font.row.arg = input$inPlotHierSparFontX, 
                          font.col.arg = input$inPlotHierSparFontY, 
                          title.arg = paste(
                            "Distance measure: ",
                            s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                            "\nLinkage method: ",
                            s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)]
                          ))
    
    return(loc.p)
  }
  
  getPlotHierSparHeatMapHeight <- function() {
    return (input$inPlotHierSparHeatMapHeight)
  }
  
  
  callModule(modTrajPlot, 'modPlotHierSparTraj', 
             in.data = data4trajPlotClSpar, 
             in.facet = 'cl', 
             in.facet.color = getClColHierSpar,
             paste0('clust_hierchSparse_tCourses_',
                    s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                    '_',
                    s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
  
  
  
  
  callModule(modClDistPlot, 'hierClSparDistPlot', 
             in.data = data4clSparDistPlot,
             in.cols = getClColHierSpar,
             in.fname = paste0('clust_hierchSparse_clDist_',
                               s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                               '_',
                               s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
  
  
  
  # Sparse Hierarchical - display heatmap
  output$outPlotHierSpar <- renderPlot({
    locBut = input$butPlotHierSparHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSpar: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSpar()
  }, height = getPlotHierSparHeatMapHeight)
  
  # Sparse Hierarchical - Heat Map - download pdf
  callModule(downPlot, "downPlotHierSparHM",       paste0('clust_hierchSparse_heatMap_',
                                                          s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                          '_',
                                                          s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.png'), plotHierSpar)
  
  
}