server.R 25.5 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2
3
4
5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6
7
8
9
10
11
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
12
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
13
library(plotly)
dmattek's avatar
dmattek committed
14
15
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
16
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
17
library(RColorBrewer)
dmattek's avatar
dmattek committed
18
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
19
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
20
21
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
22

23
# Global parameters ----
dmattek's avatar
dmattek committed
24
# change to increase the limit of the upload file size
dmattek's avatar
Added:    
dmattek committed
25
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
26

dmattek's avatar
dmattek committed
27
# Server logic ----
dmattek's avatar
dmattek committed
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
  # This is only set at session start
dmattek's avatar
dmattek committed
32
  # We use this as a way to determine which input was
33
34
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
35
36
37
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
38
39
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40
41
  )
  
dmattek's avatar
dmattek committed
42
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
43
  
dmattek's avatar
dmattek committed
44
  # Generate random dataset
45
46
47
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
dmattek's avatar
dmattek committed
48
    return(LOCgenTraj(in.nwells = 3))
49
50
  })
  
dmattek's avatar
dmattek committed
51
  # Load main data file
52
53
54
55
56
57
58
59
60
61
62
63
64
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
65
66
67
68
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
69

dmattek's avatar
dmattek committed
70
  # Load data with trajectories to remove
71
72
73
74
75
76
77
78
79
80
81
82
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
83
  
dmattek's avatar
dmattek committed
84
  # Load data with stimulation pattern
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  dataLoadStim <- eventReactive(input$inButLoadStim, {
    cat(file = stderr(), "dataLoadStim\n")
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:    
dmattek committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

118
119
120
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
    cat(file = stderr(), 'UI uiFileLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
121
    
122
123
124
125
126
127
128
129
130
131
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
    cat(file = stderr(), 'UI uiButLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
132
    
133
134
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:    
dmattek committed
135
136
  })
  
137

dmattek's avatar
dmattek committed
138
  
dmattek's avatar
dmattek committed
139
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
140
141
142
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
143
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
144
145
146
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
147
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
148
149
150
151
152
153
154
155
156
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
157
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
158
159
160
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
161
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
162
163
164
165
166
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
167
168
169
170

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
171
172
173
174
175
176
177
178
179
180
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
181
  })
dmattek's avatar
dmattek committed
182
  
dmattek's avatar
dmattek committed
183
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
184
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
185
186
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
187
188
189
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
190
191
192
193
194
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
195
196
197
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
198
199
200
201
202
203
204
205
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
206
207
208
209
210
211
212
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
213
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
214
      locCols = getDataNucCols()
215
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
216
217
218
219
220
221
222
223
224
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
225
226
227
228
229
230
231
232
  })
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
233
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
234

dmattek's avatar
dmattek committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
252
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
253

dmattek's avatar
dmattek committed
254
255
256
257
258
259
260
261
262
263
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
264
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
288
  
dmattek's avatar
dmattek committed
289
  # UI-side-panel-normalization ----
dmattek's avatar
dmattek committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
319
320
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
340
                   label = 'Normalisation grouping',
341
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
342
343
344
345
    }
  })
  
  
dmattek's avatar
dmattek committed
346
  # UI-side-panel-remove-outliers ----
dmattek's avatar
dmattek committed
347
348
349
350
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
351
      
dmattek's avatar
dmattek committed
352
353
354
355
356
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
357
        value = 99.5, 
dmattek's avatar
dmattek committed
358
359
        step = 0.1
      )
dmattek's avatar
dmattek committed
360
      
dmattek's avatar
Mod:    
dmattek committed
361
      
dmattek's avatar
dmattek committed
362
363
364
    }
  })
  
dmattek's avatar
dmattek committed
365
  
dmattek's avatar
dmattek committed
366
  # Processing-data ----
dmattek's avatar
dmattek committed
367
  
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
416
  getDataNucCols <- reactive({
417
418
419
420
421
422
423
424
425
426
427
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
428
    cat(file = stderr(), 'dataMod\n')
429
430
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
431
    if (is.null(loc.dt))
432
433
      return(NULL)
    
434
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
454
    } else {
dmattek's avatar
Added:    
dmattek committed
455
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
456
457
    }
    
dmattek's avatar
dmattek committed
458
    
dmattek's avatar
Added:    
dmattek committed
459
460
461
462
463
464
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
465
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
466
467
    }
    
468
469
470
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
471
472
473
474
475
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
476
    
dmattek's avatar
dmattek committed
477
478
479
480
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
481
482
  })
  
dmattek's avatar
Mod:    
dmattek committed
483
  
dmattek's avatar
dmattek committed
484
485
486
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
487
488
489
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
490
    
dmattek's avatar
dmattek committed
491
492
493
494
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
495
496
  })
  
dmattek's avatar
dmattek committed
497
  
498
499
500
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
501
  #    realtime - selected from input
dmattek's avatar
dmattek committed
502
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
503
  #               (can be a single column or result of an operation on two cols)
504
505
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
506
507
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
508
509
510
511
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
512
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
513
    cat(file = stderr(), 'data4trajPlot\n')
514
515
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
516
    if (is.null(loc.dt))
517
518
      return(NULL)
    
519
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
520
    if (input$inSelMath == '')
521
522
523
524
525
526
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
527
    # create expression for 'group' column
528
529
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
530
531
532
533
534
535
536
537
538
539
540
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
541
    
dmattek's avatar
dmattek committed
542
543

    # column name with time
544
545
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
546
547
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
548
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
549
    
dmattek's avatar
Added:    
dmattek committed
550
551
    
    # Find column names with position
552
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
553
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
554
    
555
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
556
557
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
558
559
560
561
      locPos = TRUE
    else
      locPos = FALSE
    
562
563
564
565
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
566
567
568
569
570
571
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
572
      loc.s.objnum = loc.s.objnum[1]
573
      locObjNum = TRUE
dmattek's avatar
dmattek committed
574
    }
575
576
    
    
577
578
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
621
        # add a column with status of track selection
622
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
623
    }
624
      
dmattek's avatar
dmattek committed
625

626
    ## Interpolate missing data and NA data points
627
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
628
629
630
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
631
    # Therefore, we cannot rely on that info to get time frequency; user provides this number!
632
    
633
634
    setkey(loc.out, group, id, realtime)

635
636
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
637
      loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime, na.rm = T), max(realtime, na.rm = T), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
      
      # x-check: print all rows with NA's
      print('Rows with NAs:')
      print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
        s.cols = c('y', 'pos.x', 'pos.y')
      else
        s.cols = c('y')
      
      loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:    
dmattek committed
665
    
666
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
667
668
669
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
670
    
671
    ## Normalization
dmattek's avatar
dmattek committed
672
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
673
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
674
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
675
676
677
678
679
680
681
682
683
684
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
685
686
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
687
688
689
690
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
691
692
693
694
695
696
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
697
698
699
700
701
702
703
704
705
706
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
707
708
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T)]
dmattek's avatar
dmattek committed
709
710
711
712
713
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
714
    
dmattek's avatar
dmattek committed
715
    return(loc.out)
dmattek's avatar
dmattek committed
716
717
  })
  
dmattek's avatar
dmattek committed
718
719
720
721
722
723
724
725
726
727
728
729
730
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
731
    #print(loc.dt)
dmattek's avatar
dmattek committed
732
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
733
    #print(loc.out)
dmattek's avatar
dmattek committed
734
735
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
736
    
dmattek's avatar
dmattek committed
737
738
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
739
    
740
741
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
Added:    
dmattek committed
742
743
744
745
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
746
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
Added:    
dmattek committed
747
    
dmattek's avatar
dmattek committed
748
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
749
  }) 
dmattek's avatar
dmattek committed
750
  
dmattek's avatar
dmattek committed
751
  
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
    cat(file = stderr(), 'data4stimPlot\n')
    
    if (input$chBstim) {
      cat(file = stderr(), 'data4stimPlot: stim not NULL\n')
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
      cat(file = stderr(), 'data4stimPlot: stim is NULL\n')
      return(NULL)
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
768
769
770
771
772
773
774
775
776
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
777
778
779
  # Plotting-trajectories ----

  # UI for selecting trajectories
780
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
781
782
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
783
    
dmattek's avatar
dmattek committed
784
785
786
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
787
    
dmattek's avatar
dmattek committed
788
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
789
    if (!is.null(loc.v)) {
790
      selectInput(
dmattek's avatar
dmattek committed
791
792
793
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
794
        width = '100%',
dmattek's avatar
dmattek committed
795
        multiple = TRUE
796
      )
dmattek's avatar
dmattek committed
797
798
799
    }
  })
  
dmattek's avatar
dmattek committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
             in.data = data4trajPlot,
             in.data.stim = data4stimPlot,
             in.fname = function() return( "tCoursesMeans.pdf"))
  
  ###### Trajectory plotting - individual
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
             in.data.stim = data4stimPlot,
             in.fname = function() {return( "tCourses.pdf")})
  
  
  # Tabs ----
814
  ###### AUC calculation and plotting
815
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
Added:    
dmattek committed
816
  
dmattek's avatar
Added:    
dmattek committed
817
  ###### Box-plot
818
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
819
  
dmattek's avatar
dmattek committed
820
  ###### Scatter plot
821
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
822
  
dmattek's avatar
dmattek committed
823
  ##### Hierarchical clustering
824
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
825
826
  
  ##### Sparse hierarchical clustering using sparcl
827
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
828

dmattek's avatar
Mod:    
dmattek committed
829
  
dmattek's avatar
dmattek committed
830
})