server.R 25.5 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9 10 11
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
12
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
13
library(plotly)
dmattek's avatar
dmattek committed
14 15
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
16
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
17
library(RColorBrewer)
dmattek's avatar
dmattek committed
18
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
19
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
20 21
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
22

23
# Global parameters ----
dmattek's avatar
dmattek committed
24
# change to increase the limit of the upload file size
dmattek's avatar
dmattek committed
25
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
26

dmattek's avatar
dmattek committed
27
# Server logic ----
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
  # This is only set at session start
dmattek's avatar
dmattek committed
32
  # We use this as a way to determine which input was
33 34
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
35 36 37
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
38 39
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40 41
  )
  
dmattek's avatar
dmattek committed
42
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
43
  
dmattek's avatar
dmattek committed
44
  # Generate random dataset
45 46 47
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
dmattek's avatar
dmattek committed
48
    return(LOCgenTraj(in.nwells = 3))
49 50
  })
  
dmattek's avatar
dmattek committed
51
  # Load main data file
52 53 54 55 56 57 58 59 60 61 62 63 64
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
65 66 67 68
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
69

dmattek's avatar
dmattek committed
70
  # Load data with trajectories to remove
71 72 73 74 75 76 77 78 79 80 81 82
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
83
  
dmattek's avatar
dmattek committed
84
  # Load data with stimulation pattern
85 86 87 88 89 90 91 92 93 94 95 96 97 98
  dataLoadStim <- eventReactive(input$inButLoadStim, {
    cat(file = stderr(), "dataLoadStim\n")
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
dmattek committed
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

118 119 120
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
    cat(file = stderr(), 'UI uiFileLoadStim\n')
dmattek's avatar
dmattek committed
121
    
122 123 124 125 126 127 128 129 130 131
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
    cat(file = stderr(), 'UI uiButLoadStim\n')
dmattek's avatar
dmattek committed
132
    
133 134
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
dmattek committed
135 136
  })
  
137

dmattek's avatar
dmattek committed
138
  
dmattek's avatar
dmattek committed
139
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
140 141 142
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
143
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
144 145 146
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
147
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
148 149 150 151 152 153 154 155 156
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
157
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
158 159 160
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
161
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
162 163 164 165 166
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
167 168 169 170

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
171 172 173 174 175 176 177 178 179 180
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
181
  })
dmattek's avatar
dmattek committed
182
  
dmattek's avatar
dmattek committed
183
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
184
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
185 186
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
187 188 189
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
190 191 192 193 194
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
195 196 197
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
198 199 200 201 202 203 204 205
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
206 207 208 209 210 211 212
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
213
    if (input$chBtrackUni) {
dmattek's avatar
dmattek committed
214
      locCols = getDataNucCols()
215
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
216 217 218 219 220 221 222 223 224
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
225 226 227 228 229 230 231 232
  })
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
233
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
234

dmattek's avatar
dmattek committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
252
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
253

dmattek's avatar
dmattek committed
254 255 256 257 258 259 260 261 262 263
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
264
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
288
  
dmattek's avatar
dmattek committed
289
  # UI-side-panel-normalization ----
dmattek's avatar
dmattek committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
319 320
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
340
                   label = 'Normalisation grouping',
341
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
342 343 344 345
    }
  })
  
  
dmattek's avatar
dmattek committed
346
  # UI-side-panel-remove-outliers ----
dmattek's avatar
dmattek committed
347 348 349 350
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:  
dmattek committed
351
      
dmattek's avatar
dmattek committed
352 353 354 355 356
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
dmattek committed
357
        value = 99.5, 
dmattek's avatar
dmattek committed
358 359
        step = 0.1
      )
dmattek's avatar
dmattek committed
360
      
dmattek's avatar
Mod:  
dmattek committed
361
      
dmattek's avatar
dmattek committed
362 363 364
    }
  })
  
dmattek's avatar
dmattek committed
365
  
dmattek's avatar
dmattek committed
366
  # Processing-data ----
dmattek's avatar
dmattek committed
367
  
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
416
  getDataNucCols <- reactive({
417 418 419 420 421 422 423 424 425 426 427
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
428
    cat(file = stderr(), 'dataMod\n')
429 430
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
431
    if (is.null(loc.dt))
432 433
      return(NULL)
    
434
    if (input$chBtrackUni) {
dmattek's avatar
dmattek committed
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
dmattek committed
454
    } else {
dmattek's avatar
dmattek committed
455
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
dmattek committed
456 457
    }
    
dmattek's avatar
dmattek committed
458
    
dmattek's avatar
dmattek committed
459 460 461 462 463 464
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
465
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
dmattek committed
466 467
    }
    
468 469 470
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
471 472 473 474 475
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
476
    
dmattek's avatar
dmattek committed
477 478 479 480
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
481 482
  })
  
dmattek's avatar
Mod:  
dmattek committed
483
  
dmattek's avatar
dmattek committed
484 485 486
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
487 488 489
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
490
    
dmattek's avatar
dmattek committed
491 492 493 494
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
495 496
  })
  
dmattek's avatar
dmattek committed
497
  
498 499 500
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
501
  #    realtime - selected from input
dmattek's avatar
dmattek committed
502
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
503
  #               (can be a single column or result of an operation on two cols)
504 505
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
506 507
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
508 509 510 511
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
512
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
513
    cat(file = stderr(), 'data4trajPlot\n')
514 515
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
516
    if (is.null(loc.dt))
517 518
      return(NULL)
    
519
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
520
    if (input$inSelMath == '')
521 522 523 524 525 526
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
527
    # create expression for 'group' column
528 529
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
530 531 532 533 534 535 536 537 538 539 540
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
541
    
dmattek's avatar
dmattek committed
542 543

    # column name with time
544 545
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
546 547
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
548
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
549
    
dmattek's avatar
dmattek committed
550 551
    
    # Find column names with position
552
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
553
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
dmattek committed
554
    
555
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
556 557
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
dmattek committed
558 559 560 561
      locPos = TRUE
    else
      locPos = FALSE
    
562 563 564 565
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
566 567 568 569 570 571
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
572
      loc.s.objnum = loc.s.objnum[1]
573
      locObjNum = TRUE
dmattek's avatar
dmattek committed
574
    }
575 576
    
    
577 578
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:  
dmattek committed
621
        # add a column with status of track selection
622
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
623
    }
624
      
dmattek's avatar
dmattek committed
625

626
    ## Interpolate missing data and NA data points
627
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
628 629 630
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
631
    # Therefore, we cannot rely on that info to get time frequency; user provides this number!
632
    
633 634
    setkey(loc.out, group, id, realtime)

635 636
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
637
      loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime, na.rm = T), max(realtime, na.rm = T), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
      
      # x-check: print all rows with NA's
      print('Rows with NAs:')
      print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
        s.cols = c('y', 'pos.x', 'pos.y')
      else
        s.cols = c('y')
      
      loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
665
    
666
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
667 668 669
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
670
    
671
    ## Normalization
dmattek's avatar
dmattek committed
672
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
673
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
674
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
675 676 677 678 679 680 681 682 683 684
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
685 686
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
687 688 689 690
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
691 692 693 694 695 696
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
697 698 699 700 701 702 703 704 705 706
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
707 708
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T)]
dmattek's avatar
dmattek committed
709 710 711 712 713
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:  
dmattek committed
714
    
dmattek's avatar
dmattek committed
715
    return(loc.out)
dmattek's avatar
dmattek committed
716 717
  })
  
dmattek's avatar
dmattek committed
718 719 720 721 722 723 724 725 726 727 728 729 730
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
dmattek committed
731
    #print(loc.dt)
dmattek's avatar
dmattek committed
732
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
dmattek committed
733
    #print(loc.out)
dmattek's avatar
dmattek committed
734 735
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:  
dmattek committed
736
    
dmattek's avatar
dmattek committed
737 738
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
dmattek committed
739
    
740 741
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
dmattek committed
742 743 744 745
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
746
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
dmattek committed
747
    
dmattek's avatar
dmattek committed
748
    return(loc.out)
dmattek's avatar
Mod:  
dmattek committed
749
  }) 
750
  
dmattek's avatar
dmattek committed
751
  
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
    cat(file = stderr(), 'data4stimPlot\n')
    
    if (input$chBstim) {
      cat(file = stderr(), 'data4stimPlot: stim not NULL\n')
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
      cat(file = stderr(), 'data4stimPlot: stim is NULL\n')
      return(NULL)
    }
  })
  
dmattek's avatar
dmattek committed
768 769 770 771 772 773 774 775 776
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
dmattek's avatar
dmattek committed
777 778 779
  # Plotting-trajectories ----

  # UI for selecting trajectories
780
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
781 782
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
783
    
dmattek's avatar
dmattek committed
784 785 786
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
787
    
dmattek's avatar
dmattek committed
788
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
789
    if (!is.null(loc.v)) {
790
      selectInput(
dmattek's avatar
dmattek committed
791 792 793
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
794
        width = '100%',
dmattek's avatar
dmattek committed
795
        multiple = TRUE
796
      )
dmattek's avatar
dmattek committed
797 798 799
    }
  })
  
dmattek's avatar
dmattek committed
800 801 802 803 804 805 806 807 808 809 810 811 812 813
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
             in.data = data4trajPlot,
             in.data.stim = data4stimPlot,
             in.fname = function() return( "tCoursesMeans.pdf"))
  
  ###### Trajectory plotting - individual
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
             in.data.stim = data4stimPlot,
             in.fname = function() {return( "tCourses.pdf")})
  
  
  # Tabs ----
814
  ###### AUC calculation and plotting
815
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
dmattek committed
816
  
dmattek's avatar
dmattek committed
817
  ###### Box-plot
818
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
819
  
dmattek's avatar
dmattek committed
820
  ###### Scatter plot
821
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
822
  
dmattek's avatar
dmattek committed
823
  ##### Hierarchical clustering
824
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
825 826
  
  ##### Sparse hierarchical clustering using sparcl
827
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
828

dmattek's avatar
Mod:  
dmattek committed
829
  
dmattek's avatar
dmattek committed
830
})