auxfunc.R 32.5 KB
Newer Older
dmattek's avatar
dmattek committed
1
2
3
4
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
dmattek's avatar
dmattek committed
5
# Auxilary functions & definitions of global constants
dmattek's avatar
dmattek committed
6
7
8
#


Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
9
10
11
12
13
library(ggplot2)
library(RColorBrewer)
library(gplots) # for heatmap.2
library(grid) # for modifying grob
library(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15
16

# Global parameters ----
17

dmattek's avatar
dmattek committed
18

19
20
21
# if true, additional output printed to R console
DEB = T

22
# font sizes in pts for plots in the manuscript
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23
24
25
26
27
28
# PLOTFONTBASE = 8
# PLOTFONTAXISTEXT = 8
# PLOTFONTAXISTITLE = 8
# PLOTFONTFACETSTRIP = 10
# PLOTFONTLEGEND = 8

dmattek's avatar
dmattek committed
29
# font sizes in pts for screen display
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
30
31
32
33
34
35
36
37
38
39
40
41
42
PLOTFONTBASE = 16
PLOTFONTAXISTEXT = 16
PLOTFONTAXISTITLE = 16
PLOTFONTFACETSTRIP = 20
PLOTFONTLEGEND = 16

# height (in pixels) of ribbon and single traj. plots
PLOTRIBBONHEIGHT = 500 # in pixels
PLOTTRAJHEIGHT = 500 # in pixels
PLOTPSDHEIGHT = 500 # in pixels
PLOTBOXHEIGHT = 500 # in pixels
PLOTSCATTERHEIGHT = 500 # in pixels
PLOTWIDTH = 85 # in percent
43
44

# default number of facets in plots
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
45
PLOTNFACETDEFAULT = 3
46

dmattek's avatar
dmattek committed
47
48
49
50
51
52
53
54
55
56
57
58
# internal column names
COLRT   = 'realtime'
COLY    = 'y'
COLID   = 'id'
COLIDUNI = 'trackObjectsLabelUni'
COLGR   = 'group'
COLIN   = 'mid.in'
COLOBJN = 'obj.num'
COLPOSX = 'pos.x'
COLPOSY = 'pos.y'
COLIDX = 'IDX'
COLIDXDIFF = 'IDXdiff'
dmattek's avatar
dmattek committed
59
COLCL = 'cl'
dmattek's avatar
dmattek committed
60
61
62
63
64
65

# file names
FCSVOUTLIERS = 'outliers.csv'
FCSVTCCLEAN  = 'tCoursesSelected_clean.csv'
FPDFTCMEAN   = "tCoursesMeans.pdf"
FPDFTCSINGLE = "tCourses.pdf"
66
FPDFTCPSD    = 'tCoursesPsd.pdf'
dmattek's avatar
dmattek committed
67
68
69
70
FPDFBOXAUC   = 'boxplotAUC.pdf'
FPDFBOXTP    = 'boxplotTP.pdf'
FPDFSCATTER  = 'scatter.pdf'

dmattek's avatar
dmattek committed
71
# Colour definitions ----
dmattek's avatar
dmattek committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

97
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
98
99
100
101
102
103
104
105
106
107
l.col.pal = list(
  "White-Orange-Red" = 'OrRd',
  "Yellow-Orange-Red" = 'YlOrRd',
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
  "Blues" = "Blues",
  "Spectral" = 'Spectral'
)

108
109
110
111
112
113
114
115
116
117
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Clustering algorithms ----

s.cl.linkage = c("ward.D",
                 "ward.D2",
                 "single",
                 "complete",
                 "average",
                 "mcquitty",
                 "centroid")

s.cl.spar.linkage = c("average",
                      "complete", 
                      "single",
                      "centroid")

s.cl.diss = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "DTW")
s.cl.spar.diss = c("squared.distance","absolute.value")


# Help text ----
dmattek's avatar
Added:    
dmattek committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Creates a popup with help text
# From: https://gist.github.com/jcheng5/5913297
helpPopup <- function(title, content,
                      placement=c('right', 'top', 'left', 'bottom'),
                      trigger=c('click', 'hover', 'focus', 'manual')) {
  tagList(
    singleton(
      tags$head(
        tags$script("$(function() { $(\"[data-toggle='popover']\").popover(); })")
      )
    ),
    tags$a(
      href = "#", class = "btn btn-mini", `data-toggle` = "popover",
      title = title, `data-content` = content, `data-animation` = TRUE,
      `data-placement` = match.arg(placement, several.ok=TRUE)[1],
      `data-trigger` = match.arg(trigger, several.ok=TRUE)[1],
      #tags$i(class="icon-question-sign")
      # changed based on http://stackoverflow.com/questions/30436013/info-bubble-text-in-a-shiny-interface
      icon("question")
    )
  )
}

161
help.text.short = c(
dmattek's avatar
dmattek committed
162
  'Load CSV file with a column of track IDs for removal. IDs should correspond to those used for plotting.',
163
  'If the track ID is unique only within a group, make it unique globally by combining with the grouping column.',
dmattek's avatar
dmattek committed
164
165
  'Interpolate missing time points and pre-existing NAs. The interval of the time column must be provided!',
  'Load CSV file with 5 columns: grouping, start and end tpts of stimulation, start and end of y-position, dummy column with ID.',
166
167
168
  'Select columns to group data according to treatment, condition, etc.',
  'Select math operation to perform on a single or two columns,',
  'Select range of time for further processing.',
169
  'Divide measurments by the mean/median or calculate z-score with respect to selected time span.',
dmattek's avatar
dmattek committed
170
  'Download time series after modification in this section.',
171
172
173
174
175
  'Long format: a row is a single data point. Wide format: a row is a time series with columns as time points.',
  'Fold-change or z-score with respect to selected time span.',
  'Normalise with respect to this time span.',
  'Calculate fold-change and z-score using the median and Median Absolute Deviation, instead of the mean and sd.',
  'Normalise to mean/median of selected time calculated globally, per group, or for individual time series.'
176
177
)

dmattek's avatar
dmattek committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
LOCcalcTrajCI = function(in.dt, in.col.meas, in.col.by = NULL, in.type = c('normal', 'boot'), ...) {
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by] else
      loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
    
    return(loc.dt)
}

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

#' Calculate the power spectrum density for time-series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.id Name of the column with the unique series identifier
#' @param in.col.by Column names for grouping (default NULL - no grouping). PSD of individual trajectories will be averaged within a group.
#' @param in.method Name of the method for PSD estimation, must be one of c("pgram", "ar"). Default to "pgram*.
#' @param in.return.period Wheter to return densities though periods (1/frequencies) instead of frequencies.
#' @param ... Other paramters to pass to stats::spectrum()
#'
#' @return Datatable with columns: (frequency or period), spec (the density) and grouping column
#' @export
#' @import data.table
#'
#' @examples
LOCcalcPSD <- function(in.dt,
                    in.col.meas,
                    in.col.id,
                    in.col.by,
                    in.method = "pgram",
                    in.return.period = TRUE,
235
                    in.time.btwPoints = 1,
236
237
                    ...){
  require(data.table)
238
239
240
241
242
243
244
245
246
  # Method "ar" returns $spec as matrix whereas "pgram" returns a vector, custom function to homogenze output format
  mySpectrum <- function(x, ...){
    args_spec <- list(x=x, plot=FALSE)
    inargs <- list(...)
    args_spec[names(inargs)] <- inargs
    out <- do.call(spectrum, args_spec)
    out$spec <- as.vector(out$spec)
    return(out)
  }
247
248
249
  if(!in.method %in% c("pgram", "ar")){
    stop('Method should be one of: c("pgram", "ar"')
  }
250
251
252
253
254
  dt_spec <-  in.dt[, (mySpectrum(get(in.col.meas), plot = FALSE, method = in.method)[c("freq", "spec")]), by = in.col.id]
  dt_group <- in.dt[, .SD[1, get(in.col.by)], by = in.col.id]
  setnames(dt_group, "V1", in.col.by)
  dt_spec <- merge(dt_spec, dt_group, by = in.col.id)
  dt_agg <- dt_spec[, .(spec = mean(spec)), by = c(in.col.by, "freq")]
255
  if(in.return.period){
256
    dt_agg[, period := 1/freq]
257
258
259
    dt_agg[, freq := NULL]
    # Adjust period unit to go from frame unit  to time unit
    dt_agg[, period := period * in.time.btwPoints]
260
  } else {
261
    dt_agg[, freq := freq * (1/in.time.btwPoints)]
262
    setnames(dt_agg, "freq", "frequency")
263
264
265
266
267
  }
  return(dt_agg)
}


dmattek's avatar
dmattek committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#' Generate synthetic CellProfiler output with single cell time series
#'
#'
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

dmattek's avatar
dmattek committed
283
LOCgenTraj <- function(in.ntpts = 60, in.ntracks = 10, in.nfov = 6, in.nwells = 1, in.addna = NULL, in.addout = NULL) {
dmattek's avatar
dmattek committed
284
285
286
287
288
289
290
291
292
293
294
  
  x.rand.1 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,   1, 0.2), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,  2, 0.5))
  x.rand.2 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.25, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.2),  rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 1, 0.2))
  
  # add NA's for testing
  if (!is.null(in.addna)) {
    locTabLen = length(x.rand.1)
    x.rand.1[round(runif(in.addna) * locTabLen)] = NA
    x.rand.2[round(runif(in.addna) * locTabLen)] = NA
  }
  
dmattek's avatar
dmattek committed
295
296
297
  # add outliers for testing
  if (!is.null(in.addout)) {
    locTabLen = length(x.rand.1)
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
298
299
    x.rand.1[round(runif(in.addout) * locTabLen)] = 5
    x.rand.2[round(runif(in.addout) * locTabLen)] = 5
dmattek's avatar
dmattek committed
300
301
  }
  
dmattek's avatar
dmattek committed
302
303
  x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
  
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
304
305
306
307
308
309
310
311
  dt.nuc = data.table(well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
                      group = rep(1:in.nfov, each = in.ntpts * in.ntracks),
                      time = x.arg,
                      y1 = x.rand.1,
                      y2  = x.rand.2,
                      posx = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      posy = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      id = rep(1:(in.ntracks*in.nfov), each = in.ntpts))
dmattek's avatar
dmattek committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  
  return(dt.nuc)
}

#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
                    in.meas.col,
dmattek's avatar
dmattek committed
339
                    in.rt.col = COLRT,
dmattek's avatar
dmattek committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
                    in.rt.min = 10,
                    in.rt.max = 20,
                    in.by.cols = NULL,
                    in.robust = TRUE,
                    in.type = 'z.score') {
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


dmattek's avatar
Added:    
dmattek committed
386

dmattek's avatar
dmattek committed
387
# Functions for clustering ----
dmattek's avatar
dmattek committed
388
389
390
391
392
393
394
395
396

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:    
dmattek committed
397
398
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
399
  loc.clAssign = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE, )
dmattek's avatar
dmattek committed
400
401
402
403
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
dmattek's avatar
dmattek committed
404
405
406
  loc.dt.clAssign = as.data.table(loc.clAssign, keep.rownames = T)
  setnames(loc.dt.clAssign, c(COLID, COLCL))
  
dmattek's avatar
dmattek committed
407
  
408
409
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
410
  return(loc.dt.clAssign)
dmattek's avatar
Added:    
dmattek committed
411
412
}

dmattek's avatar
dmattek committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
432
433
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
434
435
436
437
438
  return(loc.dt.cl)
}



dmattek's avatar
Added:    
dmattek committed
439
440
441
442
443
444
445
446
447
448
449
450
451
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
    data.table(cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
               cl.col = loc.col_labels)))
}


dmattek's avatar
dmattek committed
452
# Custom plotting functions ----
dmattek's avatar
dmattek committed
453

dmattek's avatar
dmattek committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
                       in.font.axis.text = 12,
                       in.font.axis.title = 12,
                       in.font.strip = 14,
                       in.font.legend = 12) {
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"))
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
493
494
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
495
LOCrotatedAxisElementText = function(angle, position='x', size = 12){
dmattek's avatar
dmattek committed
496
497
498
499
500
501
502
503
504
505
  angle     = angle[1]; 
  position  = position[1]
  positions = list(x=0, y=90, top=180, right=270)
  if(!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]",paste(names(positions),collapse=", ")), call.=FALSE)
  if(!is.numeric(angle))
    stop("'angle' must be numeric",call.=FALSE)
  rads = (-angle - positions[[ position ]])*pi/180
  hjust = round((1 - sin(rads)))/2
  vjust = round((1 + cos(rads)))/2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
506
  element_text(size = size, angle = angle, vjust = vjust, hjust = hjust)
dmattek's avatar
dmattek committed
507
508
}

509
510
# Plot individual time series
LOCplotTraj = function(dt.arg, # input data table
dmattek's avatar
Mod:    
dmattek committed
511
512
513
514
515
516
517
518
519
520
521
                        x.arg,  # string with column name for x-axis
                        y.arg, # string with column name for y-axis
                        group.arg, # string with column name for grouping time series (typicaly cell ID)
                        facet.arg, # string with column name for facetting
                        facet.ncol.arg = 2, # default number of facet columns
                        facet.color.arg = NULL, # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                        line.col.arg = NULL, # string with column name for colouring time series (typically when individual time series are selected in UI)
                        xlab.arg = NULL, # string with x-axis label
                        ylab.arg = NULL, # string with y-axis label
                        plotlab.arg = NULL, # string with plot label
                        dt.stim.arg = NULL, # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
522
523
                        x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                        y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
dmattek's avatar
dmattek committed
524
525
526
527
                        tfreq.arg = 1, # unused
                        xlim.arg = NULL, # limits of x-axis; for visualisation only, not trimmimng data
                        ylim.arg = NULL, # limits of y-axis; for visualisation only, not trimmimng data
                        stim.bar.width.arg = 0.5, # width of the stimulation line; plotted under time series
dmattek's avatar
Mod:    
dmattek committed
528
                        aux.label1 = NULL, # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
dmattek's avatar
Added:    
dmattek committed
529
                        aux.label2 = NULL,
530
                        aux.label3 = NULL,
dmattek's avatar
Added:    
dmattek committed
531
532
533
534
535
                        stat.arg = c('', 'mean', 'CI', 'SE')) {
  
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)

dmattek's avatar
Added:    
dmattek committed
536
537
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
538
539
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
540
                            y = y.arg,
dmattek's avatar
Added:    
dmattek committed
541
                            group = group.arg,
542
543
544
545
546
                            label = group.arg))
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
547
  
dmattek's avatar
dmattek committed
548
549
550
551
552
553
554
555
556
557
558
559
560
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
Mod:    
dmattek committed
561
562
563
564
565
566
567
568
569
570

  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {

    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:    
dmattek committed
571
572
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:    
dmattek committed
573
574
575
576
577
    p.tmp = p.tmp +
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
578
  
dmattek's avatar
Added:    
dmattek committed
579
580
  if ('mean' %in% loc.stat)
    p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
581
582
    stat_summary(
      aes_string(y = y.arg, group = 1),
dmattek's avatar
dmattek committed
583
584
      fun.y = mean, 
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
585
      colour = 'red',
dmattek's avatar
dmattek committed
586
587
588
589
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:    
dmattek committed
590
591
592
593
594
595
596
    )

  if ('CI' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
dmattek's avatar
dmattek committed
597
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
598
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
599
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
600
601
602
603
604
605
606
607
608
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
dmattek's avatar
dmattek committed
609
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
610
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
611
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
612
613
614
615
616
617
618
      geom = "ribbon",
      group = 1
    )
  
  
  
  p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
619
620
621
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
622
623
624
625

  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
626
627
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
628
629
630
631
632
                                 aes_string(x = x.stim.arg[1],
                                            xend = x.stim.arg[2],
                                            y = y.stim.arg[1],
                                            yend = y.stim.arg[2],
                                            group = 'group'),
dmattek's avatar
dmattek committed
633
                                 colour = rhg_cols[[3]],
634
                                 size = stim.bar.width.arg) 
dmattek's avatar
dmattek committed
635
636
  }
  
dmattek's avatar
dmattek committed
637
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
dmattek's avatar
dmattek committed
638
  
dmattek's avatar
dmattek committed
639
640
641
642
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
643
644
645
646
647
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
648
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
649
  
dmattek's avatar
Mod:    
dmattek committed
650
  return(p.tmp)
dmattek's avatar
dmattek committed
651
652
}

653
654
655
656
657
658
659
660
661
662
# Plot average time series with CI together in one facet
LOCplotTrajRibbon = function(dt.arg, # input data table
                          x.arg, # string with column name for x-axis
                          y.arg, # string with column name for y-axis
                          group.arg = NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                          col.arg = NULL, # colour pallette for individual time series
                          dt.stim.arg = NULL, # data table with stimulation pattern
                          x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                          y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
                          stim.bar.width.arg = 0.5,
dmattek's avatar
dmattek committed
663
664
                          xlim.arg = NULL, # limits of x-axis; for visualisation only, not trimmimng data
                          ylim.arg = NULL, # limits of y-axis; for visualisation only, not trimmimng data
665
666
667
668
669
670
671
672
673
674
675
676
677
                          ribbon.lohi.arg = c('Lower', 'Upper'),
                          ribbon.fill.arg = 'grey50',
                          ribbon.alpha.arg = 0.5,
                          xlab.arg = NULL,
                          ylab.arg = NULL,
                          plotlab.arg = NULL) {
  
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg)) +
    geom_ribbon(aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
                fill = ribbon.fill.arg,
                alpha = ribbon.alpha.arg) +
    geom_line(aes_string(y = y.arg, colour = group.arg))
  
dmattek's avatar
dmattek committed
678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes_string(x = x.stim.arg[1],
                                     xend = x.stim.arg[2],
                                     y = y.stim.arg[1],
                                     yend = y.stim.arg[2]),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }

dmattek's avatar
dmattek committed
693
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
711
712
}

713
# Plot average power spectrum density per facet
majpark21's avatar
majpark21 committed
714
715
716
717
718
LOCplotPSD <- function(dt.arg, # input data table
                    x.arg, # string with column name for x-axis
                    y.arg, # string with column name for y-axis
                    group.arg=NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                    xlab.arg = x.arg,
719
                    ylab.arg = y.arg,
720
                    facet.color.arg = NULL){
majpark21's avatar
majpark21 committed
721
722
723
724
725
726
  require(ggplot2)
  if(length(setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))) > 0){
    stop(paste("Missing columns in dt.arg: ", setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))))
  }
  p.tmp <- ggplot(dt.arg, aes_string(x=x.arg, y=y.arg)) +
    geom_line() +
727
    geom_rug(sides="b", alpha = 1, color = "lightblue") +
majpark21's avatar
majpark21 committed
728
729
    facet_wrap(group.arg) +
    labs(x = xlab.arg, y = ylab.arg)
730
  
731
732
733
734
735
736
737
738
  if (!is.null(facet.color.arg)) {
    
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', group.arg)
    
    # adjust facet.color.arg to plot
    
739
    p.tmp = p.tmp +
740
741
742
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
743
744
  }
  
majpark21's avatar
majpark21 committed
745
746
  return(p.tmp)
}
747

dmattek's avatar
dmattek committed
748
749
750
751
752
753
754
755
# Plots a scatter plot with marginal histograms
# Points are connected by a line (grouping by cellID)
#
# Assumes an input of data.table with
# x, y - columns with x and y coordinates
# id - a unique point identifier (here corresponds to cellID)
# mid - a (0,1) column by which points are coloured (here corresponds to whether cells are within bounds)

dmattek's avatar
dmattek committed
756
LOCggplotScat = function(dt.arg,
dmattek's avatar
dmattek committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
                        band.arg = NULL,
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
                        group.col.arg = NULL) {
  p.tmp = ggplot(dt.arg, aes(x = x, y = y))
  
  if (is.null(group.col.arg)) {
    p.tmp = p.tmp +
      geom_point(alpha = alpha.arg, aes(group = id))
  } else {
    p.tmp = p.tmp +
      geom_point(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      geom_path(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      scale_color_manual(name = group.col.arg, values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green'))
  }
  
  if (is.null(band.arg))
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
780
781
782
        # method = function(formula, data, weights = weight)
        #   rlm(formula, data, weights = weight, method = 'MM'),
        method = "lm",
dmattek's avatar
dmattek committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        fullrange = FALSE,
        level = 0.95,
        colour = 'blue'
      )
  else {
    p.tmp = p.tmp +
      geom_abline(slope = band.arg$a, intercept = band.arg$b) +
      geom_abline(
        slope = band.arg$a,
        intercept =  band.arg$b + abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      ) +
      geom_abline(
        slope = band.arg$a,
        intercept = band.arg$b - abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      )
  }
  
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  
  
  p.tmp = p.tmp +
825
826
827
828
829
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
830
831
    theme(legend.position = "none")

dmattek's avatar
dmattek committed
832
833
834
835
836
837
  # Marginal distributions don;t work with plotly...
  # if (is.null(facet.arg))
  #   ggExtra::ggMarginal(p.scat, type = "histogram",  bins = 100)
  # else
  return(p.tmp)
}
dmattek's avatar
dmattek committed
838

839

dmattek's avatar
dmattek committed
840
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
Mod:    
dmattek committed
841
842
843
844
845
846
847
848
849
850
851
852
                          dend.arg,
                          palette.arg,
                          palette.rev.arg = TRUE,
                          dend.show.arg = TRUE,
                          key.show.arg = TRUE,
                          margin.x.arg = 5,
                          margin.y.arg = 20,
                          nacol.arg = 0.5,
                          colCol.arg = NULL,
                          labCol.arg = NULL,
                          font.row.arg = 1,
                          font.col.arg = 1,
853
                          breaks.arg = NULL,
dmattek's avatar
Mod:    
dmattek committed
854
855
                          title.arg = 'Clustering') {
  
856
857
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:    
dmattek committed
858
859
  if (palette.rev.arg)
    my_palette <-
860
    rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:    
dmattek committed
861
862
  else
    my_palette <-
863
    colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:    
dmattek committed
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
899
900
    main = title.arg,
    symbreaks = FALSE,
901
902
    symkey = FALSE,
    breaks = if (is.null(breaks.arg)) NULL else seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks+1)
dmattek's avatar
Mod:    
dmattek committed
903
904
905
906
  )
  
  return(loc.p)
}