auxfunc.R 38.7 KB
Newer Older
dmattek's avatar
dmattek committed
1
2
3
4
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
dmattek's avatar
dmattek committed
5
# Auxilary functions & definitions of global constants
dmattek's avatar
dmattek committed
6
7
8
#


Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
9
10
11
12
13
library(ggplot2)
library(RColorBrewer)
library(gplots) # for heatmap.2
library(grid) # for modifying grob
library(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15
16

# Global parameters ----
17

dmattek's avatar
dmattek committed
18

19
20
21
# if true, additional output printed to R console
DEB = T

22
# font sizes in pts for plots in the manuscript
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23
24
25
26
27
28
# PLOTFONTBASE = 8
# PLOTFONTAXISTEXT = 8
# PLOTFONTAXISTITLE = 8
# PLOTFONTFACETSTRIP = 10
# PLOTFONTLEGEND = 8

dmattek's avatar
dmattek committed
29
# font sizes in pts for screen display
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
30
31
32
33
34
35
36
37
38
39
40
41
42
PLOTFONTBASE = 16
PLOTFONTAXISTEXT = 16
PLOTFONTAXISTITLE = 16
PLOTFONTFACETSTRIP = 20
PLOTFONTLEGEND = 16

# height (in pixels) of ribbon and single traj. plots
PLOTRIBBONHEIGHT = 500 # in pixels
PLOTTRAJHEIGHT = 500 # in pixels
PLOTPSDHEIGHT = 500 # in pixels
PLOTBOXHEIGHT = 500 # in pixels
PLOTSCATTERHEIGHT = 500 # in pixels
PLOTWIDTH = 85 # in percent
43
44

# default number of facets in plots
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
45
PLOTNFACETDEFAULT = 3
46

dmattek's avatar
dmattek committed
47
# internal column names
dmattek's avatar
dmattek committed
48
COLRT   = 'time'
dmattek's avatar
dmattek committed
49
50
51
52
53
54
55
56
57
58
COLY    = 'y'
COLID   = 'id'
COLIDUNI = 'trackObjectsLabelUni'
COLGR   = 'group'
COLIN   = 'mid.in'
COLOBJN = 'obj.num'
COLPOSX = 'pos.x'
COLPOSY = 'pos.y'
COLIDX = 'IDX'
COLIDXDIFF = 'IDXdiff'
dmattek's avatar
dmattek committed
59
COLCL = 'cl'
dmattek's avatar
dmattek committed
60
61
62
63
64
65

# file names
FCSVOUTLIERS = 'outliers.csv'
FCSVTCCLEAN  = 'tCoursesSelected_clean.csv'
FPDFTCMEAN   = "tCoursesMeans.pdf"
FPDFTCSINGLE = "tCourses.pdf"
66
FPDFTCPSD    = 'tCoursesPsd.pdf'
dmattek's avatar
dmattek committed
67
68
69
70
FPDFBOXAUC   = 'boxplotAUC.pdf'
FPDFBOXTP    = 'boxplotTP.pdf'
FPDFSCATTER  = 'scatter.pdf'

dmattek's avatar
dmattek committed
71
# Colour definitions ----
dmattek's avatar
dmattek committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

97
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
98
l.col.pal = list(
dmattek's avatar
dmattek committed
99
100
101
102
  "Spectral" = 'Spectral',
  "Red-Yellow-Green" = 'RdYlGn',
  "Red-Yellow-Blue" = 'RdYlBu',
  "Greys" = "Greys",
dmattek's avatar
dmattek committed
103
104
105
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
dmattek's avatar
dmattek committed
106
  "Blues" = "Blues"
dmattek's avatar
dmattek committed
107
108
)

109
110
111
112
113
114
115
116
117
118
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
119
120
121
122
123
124
125
126
127
128
129
# list of palettes for the dendrogram
l.col.pal.dend.2 = list(
  "Colorblind 10" = 'Color Blind',
  "Tableau 10" = 'Tableau 10',
  "Tableau 20" = 'Tableau 20',
  "Classic 10" = "Classic 10",
  "Classic 20" = "Classic 20",
  "Traffic 9" = 'Traffic',
  "Seattle Grays 5" = 'Seattle Grays'
)

dmattek's avatar
dmattek committed
130
# Help text ----
dmattek's avatar
Added:    
dmattek committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Creates a popup with help text
# From: https://gist.github.com/jcheng5/5913297
helpPopup <- function(title, content,
                      placement=c('right', 'top', 'left', 'bottom'),
                      trigger=c('click', 'hover', 'focus', 'manual')) {
  tagList(
    singleton(
      tags$head(
        tags$script("$(function() { $(\"[data-toggle='popover']\").popover(); })")
      )
    ),
    tags$a(
      href = "#", class = "btn btn-mini", `data-toggle` = "popover",
      title = title, `data-content` = content, `data-animation` = TRUE,
      `data-placement` = match.arg(placement, several.ok=TRUE)[1],
      `data-trigger` = match.arg(trigger, several.ok=TRUE)[1],
      #tags$i(class="icon-question-sign")
      # changed based on http://stackoverflow.com/questions/30436013/info-bubble-text-in-a-shiny-interface
      icon("question")
    )
  )
}

dmattek's avatar
dmattek committed
154
helpText.server = c(
dmattek's avatar
dmattek committed
155
156
157
158
159
160
161
162
163
164
165
  alDataFormat =  paste0("<p>Switch between long and wide formats of input data. ",
                           "TCI accepts CSV or compressed CSV files (gz or bz2).</p>",
                           "<p><b>Long format</b> - a row is a single data point and consecutive time series are arranged vertically. ",
                           "Data file should contain at least 3 columns separated with a comma:</p>",
                           "<li>Identifier of a time series</li>",
                           "<li>Time points</li>",
                           "<li>A time-varying variable</li>",
                           "<br>",
                           "<p><b>Wide format</b> - a row is a time series with columns as time points.",
                           "At least 3 columns shuold be present:</p>",
                           "<li>First two columns in wide format should contain grouping and track IDs</li>",
166
167
168
169
170
171
172
                           "<li>A column with a time point. Headers of columns with time points need to be numeric</li>"),
  inDataGen1 =   'Generate 60 random synthetic time series distributed evenly among 6 groups. Every time series has 60 time points.',
  chBtrajRem =   'Load CSV file with a column of track IDs for removal. IDs should correspond to those used for plotting.',
  chBstim =      'Load CSV file with stimulation pattern. Should contain 5 columns: grouping, start and end time points of stimulation, start and end of y-position, dummy column with ID.',
  chBtrajInter = 'Interpolate missing measurements indicated with NAs in the data file. In addition, interpolate a row that is completely missing from the data. The interval of the time column must be provided to know which rows are missing.',                       #6
  chBtrackUni =  'If the track ID is unique only within a group, make it unique globally by combining with grouping columns.', 
  'If the track ID is not globally unique, try to make it unique by prepending another column to the track ID (typically the group column).', 
dmattek's avatar
dmattek committed
173
174
175
  'Select columns to group data according to treatment, condition, etc.',                                                          #8
  'Select math operation to perform on a single or two columns,',                                                                  #9
  'Select range of time for further processing.',                                                                                  #10
majpark21's avatar
majpark21 committed
176
  'Divide measurements by the mean/median or calculate z-score with respect to selected time span.',                                #11
dmattek's avatar
dmattek committed
177
178
  'Fold-change or z-score with respect to selected time span.',                                                                    #12
  'Normalise with respect to this time span.',                                                                                     #13
majpark21's avatar
majpark21 committed
179
  'Calculate fold-change and z-score using the median and Median Absolute Deviation, instead of the mean and standard deviation.',                 #14
dmattek's avatar
dmattek committed
180
  'Normalise to mean/median of selected time calculated globally, per group, or for individual time series.',                      #15
dmattek's avatar
dmattek committed
181
  'Download time series after modification in this section.',                                                                      #16
dmattek's avatar
dmattek committed
182
183
184
  alertNAsPresent = "NAs present in the measurement column. Consider interpolation.",
  alertWideMissesNumericTime = "Non-numeric headers of time columns. Data in wide format should have numeric column headers corresponding to time points.",
  alertWideTooFewColumns = "Insufficient columns. Data in wide format should contain at least 3 columns: grouping, track ID, and a single time point."
185
186
)

dmattek's avatar
dmattek committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
LOCcalcTrajCI = function(in.dt, in.col.meas, in.col.by = NULL, in.type = c('normal', 'boot'), ...) {
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by] else
      loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
    
    return(loc.dt)
}

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#' Calculate standard error of the mean
#'
#' @param x Vector
#' @param na.rm Remove NAs; default = FALSE
#'
#' @return A scalar with the result
#' @export
#'
#' @examples
LOCstderr = function(x, na.rm=FALSE) {
  if (na.rm) 
    x = na.omit(x)
  
  return(sqrt(var(x)/length(x)))
}

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#' Calculate the power spectrum density for time-series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.id Name of the column with the unique series identifier
#' @param in.col.by Column names for grouping (default NULL - no grouping). PSD of individual trajectories will be averaged within a group.
#' @param in.method Name of the method for PSD estimation, must be one of c("pgram", "ar"). Default to "pgram*.
#' @param in.return.period Wheter to return densities though periods (1/frequencies) instead of frequencies.
#' @param ... Other paramters to pass to stats::spectrum()
#'
#' @return Datatable with columns: (frequency or period), spec (the density) and grouping column
#' @export
#' @import data.table
#'
#' @examples
LOCcalcPSD <- function(in.dt,
                    in.col.meas,
                    in.col.id,
                    in.col.by,
                    in.method = "pgram",
                    in.return.period = TRUE,
260
                    in.time.btwPoints = 1,
261
262
                    ...){
  require(data.table)
263
264
265
266
267
268
269
270
271
  # Method "ar" returns $spec as matrix whereas "pgram" returns a vector, custom function to homogenze output format
  mySpectrum <- function(x, ...){
    args_spec <- list(x=x, plot=FALSE)
    inargs <- list(...)
    args_spec[names(inargs)] <- inargs
    out <- do.call(spectrum, args_spec)
    out$spec <- as.vector(out$spec)
    return(out)
  }
272
273
274
  if(!in.method %in% c("pgram", "ar")){
    stop('Method should be one of: c("pgram", "ar"')
  }
275
276
277
278
279
  dt_spec <-  in.dt[, (mySpectrum(get(in.col.meas), plot = FALSE, method = in.method)[c("freq", "spec")]), by = in.col.id]
  dt_group <- in.dt[, .SD[1, get(in.col.by)], by = in.col.id]
  setnames(dt_group, "V1", in.col.by)
  dt_spec <- merge(dt_spec, dt_group, by = in.col.id)
  dt_agg <- dt_spec[, .(spec = mean(spec)), by = c(in.col.by, "freq")]
280
  if(in.return.period){
281
    dt_agg[, period := 1/freq]
282
283
284
    dt_agg[, freq := NULL]
    # Adjust period unit to go from frame unit  to time unit
    dt_agg[, period := period * in.time.btwPoints]
285
  } else {
286
    dt_agg[, freq := freq * (1/in.time.btwPoints)]
287
    setnames(dt_agg, "freq", "frequency")
288
289
290
291
292
  }
  return(dt_agg)
}


293
#' Generate synthetic CellProfiler output with single-cell time series
dmattek's avatar
dmattek committed
294
295
296
297
298
299
300
301
302
303
304
305
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

dmattek's avatar
dmattek committed
306
LOCgenTraj <- function(in.ntpts = 60, in.ntracks = 10, in.nfov = 6, in.nwells = 1, in.addna = NULL, in.addout = NULL) {
dmattek's avatar
dmattek committed
307
308
309
310
311
312
313
314
315
316
317
  
  x.rand.1 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,   1, 0.2), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,  2, 0.5))
  x.rand.2 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.25, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.2),  rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 1, 0.2))
  
  # add NA's for testing
  if (!is.null(in.addna)) {
    locTabLen = length(x.rand.1)
    x.rand.1[round(runif(in.addna) * locTabLen)] = NA
    x.rand.2[round(runif(in.addna) * locTabLen)] = NA
  }
  
dmattek's avatar
dmattek committed
318
319
320
  # add outliers for testing
  if (!is.null(in.addout)) {
    locTabLen = length(x.rand.1)
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
321
322
    x.rand.1[round(runif(in.addout) * locTabLen)] = 5
    x.rand.2[round(runif(in.addout) * locTabLen)] = 5
dmattek's avatar
dmattek committed
323
324
  }
  
dmattek's avatar
dmattek committed
325
326
  x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
  
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
327
328
329
330
331
332
333
334
  dt.nuc = data.table(well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
                      group = rep(1:in.nfov, each = in.ntpts * in.ntracks),
                      time = x.arg,
                      y1 = x.rand.1,
                      y2  = x.rand.2,
                      posx = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      posy = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      id = rep(1:(in.ntracks*in.nfov), each = in.ntpts))
dmattek's avatar
dmattek committed
335
336
337
338
  
  return(dt.nuc)
}

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
LOCgenTraj2 <- function(n_perGroup = 20, sd_noise = 0.01, sampleFreq = 0.2, endTime = 50)
{
  # Function definition ----------------------------------
  sim_expodecay_lagged_stim <-
    function (n,
              noise,
              interval.stim = 5,
              lambda = 0.2,
              freq = 0.2,
              end = 50)
    {
      require(data.table)
      tvec <- seq(0, end - 1, by = freq)
      stim_time <- seq(interval.stim, end - 1, interval.stim)
      stim_time_matrix <-
        matrix(stim_time, nrow = length(stim_time),
               ncol = n)
      noise_matrix <- abs(replicate(n, rnorm(
        n = length(stim_time),
        mean = 0,
        sd = noise
      )))
      stim_time_matrix <- stim_time_matrix + noise_matrix
      trajs <- matrix(0, nrow = length(tvec), ncol = n)
      for (col in 1:ncol(stim_time_matrix)) {
        for (row in 1:nrow(stim_time_matrix)) {
          index <- which(tvec >= stim_time_matrix[row, col])[1]
          trajs[index, col] <- 1
        }
      }
      decrease_factor <- exp(-lambda * freq)
      for (col in 1:ncol(trajs)) {
        for (row in 2:nrow(trajs)) {
          if (trajs[row, col] != 1) {
            trajs[row, col] <- trajs[row - 1, col] * decrease_factor
          }
        }
      }
      trajs <- as.data.table(trajs)
      trajs <- cbind(seq(0, end - 1, by = freq), trajs)
      colnames(trajs)[1] <- "Time"
      trajs <- melt(trajs, id.vars = "Time")
      return(trajs)
    }
  
  
  # Dataset creation -----------------------------------------------
  dt1 <-
    sim_expodecay_lagged_stim(
      n = n_perGroup,
      noise = 0.75,
      interval.stim = 10,
      lambda = 0.4,
      freq = sampleFreq,
      end = endTime
    )
  dt2 <-
    sim_expodecay_lagged_stim(
      n = n_perGroup,
      noise = 0.75,
      interval.stim = 10,
      lambda = 0.1,
      freq = sampleFreq,
      end = endTime
    )
  dt3 <-
    sim_expodecay_lagged_stim(
      n = n_perGroup,
      noise = 0.75,
      interval.stim = 10,
      lambda = 0.4,
      freq = sampleFreq,
      end = endTime
    )
  dt3[, value := value / 3]
  
  dt1[, Group := "fastDecay"]
  dt2[, Group := "slowDecay"]
  dt3[, Group := "lowAmplitude"]
  
  dt <- rbindlist(list(dt1, dt2, dt3))
  dt[, ID := paste(Group, variable, sep = "_")]
  dt[, variable := NULL]
  dt[, Group := as.factor(Group)]
  
  dt[, value := value + runif(1, -0.1, 0.1), by = ID]
  noise_vec <- rnorm(n = nrow(dt), mean = 0, sd = sd_noise)
  dt[, value := value + noise_vec]
  
  setnames(dt, "value", "Meas")
  setcolorder(dt, c("Group", "ID", "Time", "Meas"))
  
  return(dt)
}

dmattek's avatar
dmattek committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
                    in.meas.col,
dmattek's avatar
dmattek committed
457
                    in.rt.col = COLRT,
dmattek's avatar
dmattek committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
                    in.rt.min = 10,
                    in.rt.max = 20,
                    in.by.cols = NULL,
                    in.robust = TRUE,
                    in.type = 'z.score') {
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


dmattek's avatar
Added:    
dmattek committed
504

505
# Clustering ----
dmattek's avatar
dmattek committed
506
507
508
509
510
511
512
513
514

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:    
dmattek committed
515
516
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
517
  loc.clAssign = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE, )
dmattek's avatar
dmattek committed
518
519
520
521
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
dmattek's avatar
dmattek committed
522
523
524
  loc.dt.clAssign = as.data.table(loc.clAssign, keep.rownames = T)
  setnames(loc.dt.clAssign, c(COLID, COLCL))
  
dmattek's avatar
dmattek committed
525
  
526
527
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
528
  return(loc.dt.clAssign)
dmattek's avatar
Added:    
dmattek committed
529
530
}

dmattek's avatar
dmattek committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
550
551
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
552
553
554
555
556
  return(loc.dt.cl)
}



dmattek's avatar
Added:    
dmattek committed
557
558
559
560
561
562
563
564
565
566
567
568
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
    data.table(cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
               cl.col = loc.col_labels)))
}

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Cluster validation ----

#Customize factoextra functions to accept dissimilarity matrix from start. Otherwise can't use distance functions that are not in base R, like DTW.

# Inherit and adapt hcut function to take input from UI, used for fviz_clust 
LOChcut <- function(x, k = 2, isdiss = inherits(x, "dist"), hc_func = "hclust", hc_method = "average", hc_metric = "euclidean"){
  if(!inherits(x, "dist")){stop("x must be a distance matrix")}
  return(factoextra::hcut(x = x, k = k, isdiss = TRUE, hc_func = hc_func, hc_method = hc_method, hc_metric = hc_metric))
}

# Modified from factoextra::fviz_nbclust
# Allow (actually enforce) x to be a distance matrix; no GAP statistics for compatibility
LOCnbclust <- function (x, FUNcluster = LOChcut, method = c("silhouette", "wss"), k.max = 10, verbose = FALSE, 
          barfill = "steelblue", barcolor = "steelblue", linecolor = "steelblue", 
          print.summary = TRUE, ...) 
{
  set.seed(123)
  if (k.max < 2) 
    stop("k.max must bet > = 2")
  method = match.arg(method)
  if (!inherits(x, c("dist")))
    stop("x should be an object of class dist")
  else if (is.null(FUNcluster)) 
    stop("The argument FUNcluster is required. ", "Possible values are kmeans, pam, hcut, clara, ...")
  else if (method %in% c("silhouette", "wss")) {
    diss <- x  # x IS ENFORCED TO BE A DISSIMILARITY MATRIX
    v <- rep(0, k.max)
    if (method == "silhouette") {
      for (i in 2:k.max) {
        clust <- FUNcluster(x, i, ...)
        v[i] <- factoextra:::.get_ave_sil_width(diss, clust$cluster)
      }
    }
    else if (method == "wss") {
      for (i in 1:k.max) {
        clust <- FUNcluster(x, i, ...)
        v[i] <- factoextra:::.get_withinSS(diss, clust$cluster)
      }
    }
    df <- data.frame(clusters = as.factor(1:k.max), y = v)
    ylab <- "Total Within Sum of Square"
    if (method == "silhouette") 
      ylab <- "Average silhouette width"
    p <- ggpubr::ggline(df, x = "clusters", y = "y", group = 1, 
                        color = linecolor, ylab = ylab, xlab = "Number of clusters k", 
                        main = "Optimal number of clusters")
    if (method == "silhouette") 
      p <- p + geom_vline(xintercept = which.max(v), linetype = 2, 
                          color = linecolor)
    return(p)
  }
}

dmattek's avatar
Added:    
dmattek committed
622

dmattek's avatar
dmattek committed
623
# Custom plotting functions ----
dmattek's avatar
dmattek committed
624

dmattek's avatar
dmattek committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
                       in.font.axis.text = 12,
                       in.font.axis.title = 12,
                       in.font.strip = 14,
                       in.font.legend = 12) {
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"))
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
664
665
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
666
LOCrotatedAxisElementText = function(angle, position='x', size = 12){
dmattek's avatar
dmattek committed
667
668
669
670
671
672
673
674
675
676
  angle     = angle[1]; 
  position  = position[1]
  positions = list(x=0, y=90, top=180, right=270)
  if(!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]",paste(names(positions),collapse=", ")), call.=FALSE)
  if(!is.numeric(angle))
    stop("'angle' must be numeric",call.=FALSE)
  rads = (-angle - positions[[ position ]])*pi/180
  hjust = round((1 - sin(rads)))/2
  vjust = round((1 + cos(rads)))/2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
677
  element_text(size = size, angle = angle, vjust = vjust, hjust = hjust)
dmattek's avatar
dmattek committed
678
679
}

680
681
# Plot individual time series
LOCplotTraj = function(dt.arg, # input data table
dmattek's avatar
Mod:    
dmattek committed
682
683
684
685
686
687
688
689
690
691
692
                        x.arg,  # string with column name for x-axis
                        y.arg, # string with column name for y-axis
                        group.arg, # string with column name for grouping time series (typicaly cell ID)
                        facet.arg, # string with column name for facetting
                        facet.ncol.arg = 2, # default number of facet columns
                        facet.color.arg = NULL, # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                        line.col.arg = NULL, # string with column name for colouring time series (typically when individual time series are selected in UI)
                        xlab.arg = NULL, # string with x-axis label
                        ylab.arg = NULL, # string with y-axis label
                        plotlab.arg = NULL, # string with plot label
                        dt.stim.arg = NULL, # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
693
694
                        x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                        y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
dmattek's avatar
dmattek committed
695
696
697
698
                        tfreq.arg = 1, # unused
                        xlim.arg = NULL, # limits of x-axis; for visualisation only, not trimmimng data
                        ylim.arg = NULL, # limits of y-axis; for visualisation only, not trimmimng data
                        stim.bar.width.arg = 0.5, # width of the stimulation line; plotted under time series
dmattek's avatar
Mod:    
dmattek committed
699
                        aux.label1 = NULL, # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
dmattek's avatar
Added:    
dmattek committed
700
                        aux.label2 = NULL,
701
                        aux.label3 = NULL,
dmattek's avatar
Added:    
dmattek committed
702
703
704
705
706
                        stat.arg = c('', 'mean', 'CI', 'SE')) {
  
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)

dmattek's avatar
Added:    
dmattek committed
707
708
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
709
710
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
711
                            y = y.arg,
dmattek's avatar
Added:    
dmattek committed
712
                            group = group.arg,
713
714
715
716
717
                            label = group.arg))
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
718
  
dmattek's avatar
dmattek committed
719
720
721
722
723
724
725
726
727
728
729
730
731
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
Mod:    
dmattek committed
732
733
734
735
736
737
738
739
740
741

  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {

    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:    
dmattek committed
742
743
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:    
dmattek committed
744
745
746
747
748
    p.tmp = p.tmp +
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
749
  
dmattek's avatar
Added:    
dmattek committed
750
751
  if ('mean' %in% loc.stat)
    p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
752
753
    stat_summary(
      aes_string(y = y.arg, group = 1),
dmattek's avatar
dmattek committed
754
755
      fun.y = mean, 
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
756
      colour = 'red',
dmattek's avatar
dmattek committed
757
758
759
760
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:    
dmattek committed
761
762
763
764
765
766
767
    )

  if ('CI' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
dmattek's avatar
dmattek committed
768
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
769
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
770
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
771
772
773
774
775
776
777
778
779
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
dmattek's avatar
dmattek committed
780
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
781
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
782
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
783
784
785
786
787
788
789
      geom = "ribbon",
      group = 1
    )
  
  
  
  p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
790
791
792
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
793
794
795
796

  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
797
798
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
799
800
801
802
803
                                 aes_string(x = x.stim.arg[1],
                                            xend = x.stim.arg[2],
                                            y = y.stim.arg[1],
                                            yend = y.stim.arg[2],
                                            group = 'group'),
dmattek's avatar
dmattek committed
804
                                 colour = rhg_cols[[3]],
805
                                 size = stim.bar.width.arg) 
dmattek's avatar
dmattek committed
806
807
  }
  
dmattek's avatar
dmattek committed
808
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
dmattek's avatar
dmattek committed
809
  
dmattek's avatar
dmattek committed
810
811
812
813
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
814
815
816
817
818
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
819
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
820
  
dmattek's avatar
Mod:    
dmattek committed
821
  return(p.tmp)
dmattek's avatar
dmattek committed
822
823
}

824
825
826
827
828
829
830
831
832
833
# Plot average time series with CI together in one facet
LOCplotTrajRibbon = function(dt.arg, # input data table
                          x.arg, # string with column name for x-axis
                          y.arg, # string with column name for y-axis
                          group.arg = NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                          col.arg = NULL, # colour pallette for individual time series
                          dt.stim.arg = NULL, # data table with stimulation pattern
                          x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                          y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
                          stim.bar.width.arg = 0.5,
dmattek's avatar
dmattek committed
834
835
                          xlim.arg = NULL, # limits of x-axis; for visualisation only, not trimmimng data
                          ylim.arg = NULL, # limits of y-axis; for visualisation only, not trimmimng data
836
                          ribbon.lohi.arg = c('Lower', 'Upper'), # column names containing lower and upper bound for plotting the ribbon, e.g. for CI; set to NULL to avoid plotting the ribbon
837
838
839
840
841
842
                          ribbon.fill.arg = 'grey50',
                          ribbon.alpha.arg = 0.5,
                          xlab.arg = NULL,
                          ylab.arg = NULL,
                          plotlab.arg = NULL) {
  
843
844
845
846
847
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg))
  
  if (!is.null(ribbon.lohi.arg))
    p.tmp = p.tmp + 
      geom_ribbon(aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
848
                fill = ribbon.fill.arg,
849
850
851
                alpha = ribbon.alpha.arg)
  
  p.tmp = p.tmp + geom_line(aes_string(y = y.arg, colour = group.arg))
852
  
dmattek's avatar
dmattek committed
853

854
855
856
857
858
859
860
861
862
863
864
865
866
867
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes_string(x = x.stim.arg[1],
                                     xend = x.stim.arg[2],
                                     y = y.stim.arg[1],
                                     yend = y.stim.arg[2]),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }

dmattek's avatar
dmattek committed
868
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
886
887
}

888
# Plot average power spectrum density per facet
majpark21's avatar
majpark21 committed
889
890
891
892
893
LOCplotPSD <- function(dt.arg, # input data table
                    x.arg, # string with column name for x-axis
                    y.arg, # string with column name for y-axis
                    group.arg=NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                    xlab.arg = x.arg,
894
                    ylab.arg = y.arg,
895
                    facet.color.arg = NULL){
majpark21's avatar
majpark21 committed
896
897
898
899
900
901
  require(ggplot2)
  if(length(setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))) > 0){
    stop(paste("Missing columns in dt.arg: ", setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))))
  }
  p.tmp <- ggplot(dt.arg, aes_string(x=x.arg, y=y.arg)) +
    geom_line() +
902
    geom_rug(sides="b", alpha = 1, color = "lightblue") +
majpark21's avatar
majpark21 committed
903
904
    facet_wrap(group.arg) +
    labs(x = xlab.arg, y = ylab.arg)
905
  
906
907
908
909
910
911
912
913
  if (!is.null(facet.color.arg)) {
    
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', group.arg)
    
    # adjust facet.color.arg to plot
    
914
    p.tmp = p.tmp +
915
916
917
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
918
919
  }
  
majpark21's avatar
majpark21 committed
920
921
  return(p.tmp)
}
922

dmattek's avatar
dmattek committed
923
924
925
926
927
928
929
930
931
932
933
934
935
#' Plot a scatter plot with an optional linear regression
#'
#' @param dt.arg input of data.table with 2 columns with x and y coordinates
#' @param facet.arg 
#' @param facet.ncol.arg 
#' @param xlab.arg 
#' @param ylab.arg 
#' @param plotlab.arg 
#' @param alpha.arg 
#' @param trend.arg 
#' @param ci.arg 

LOCggplotScat = function(dt.arg, 
dmattek's avatar
dmattek committed
936
937
938
939
940
941
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
dmattek's avatar
dmattek committed
942
943
                        trend.arg = T,
                        ci.arg = 0.95) {
dmattek's avatar
dmattek committed
944
  
dmattek's avatar
dmattek committed
945
  p.tmp = ggplot(dt.arg, aes(x = x, y = y, label = id)) +
dmattek's avatar
dmattek committed
946
947
948
    geom_point(alpha = alpha.arg)

  if (trend.arg) {
dmattek's avatar
dmattek committed
949
950
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
951
        method = "lm",
dmattek's avatar
dmattek committed
952
        fullrange = FALSE,
dmattek's avatar
dmattek committed
953
        level = ci.arg,
dmattek's avatar
dmattek committed
954
955
956
        colour = 'blue'
      )
  }
dmattek's avatar
dmattek committed
957

dmattek's avatar
dmattek committed
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  p.tmp = p.tmp +
978
979
980
981
982
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
983
984
    theme(legend.position = "none")

dmattek's avatar
dmattek committed
985
986
  return(p.tmp)
}
dmattek's avatar
dmattek committed
987

988

dmattek's avatar
dmattek committed
989
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
Mod:    
dmattek committed
990
991
992
993
994
995
996
997
998
999
1000
1001
                          dend.arg,
                          palette.arg,
                          palette.rev.arg = TRUE,
                          dend.show.arg = TRUE,
                          key.show.arg = TRUE,
                          margin.x.arg = 5,
                          margin.y.arg = 20,
                          nacol.arg = 0.5,
                          colCol.arg = NULL,
                          labCol.arg = NULL,
                          font.row.arg = 1,
                          font.col.arg = 1,
1002
                          breaks.arg = NULL,
dmattek's avatar
Mod:    
dmattek committed
1003
1004
                          title.arg = 'Clustering') {
  
1005
1006
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:    
dmattek committed
1007
1008
  if (palette.rev.arg)
    my_palette <-
1009
    rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:    
dmattek committed
1010
1011
  else
    my_palette <-
1012
    colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:    
dmattek committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
1048
1049
    main = title.arg,
    symbreaks = FALSE,
1050
1051
    symkey = FALSE,
    breaks = if (is.null(breaks.arg)) NULL else seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks+1)
dmattek's avatar
Mod:    
dmattek committed
1052
1053
1054
1055
  )
  
  return(loc.p)
}