server.R 35.8 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
18
19
20
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
21

22
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
23
options(shiny.maxRequestSize = 80 * 1024 ^ 2)
dmattek's avatar
dmattek committed
24

dmattek's avatar
dmattek committed
25
shinyServer(function(input, output, session) {
26
  useShinyjs()
dmattek's avatar
dmattek committed
27
  
28
29
30
31
32
33
34
35
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
    dataLoadNuc  = isolate(input$inButLoadNuc)
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
36
37
  )
  
dmattek's avatar
dmattek committed
38
39
40
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
41
  # FILE LOAD
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
69
70
71
72
73
74
75
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
dmattek committed
76
77
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'rack'][1] # index 1 at the end in case more matches; select 1st
    
    selectInput(
      'inSelTrackLabel',
      'Select Track Label (e.g. objNuc_Track_ObjectsLabel):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'RealTime'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
      'Select time column (e.g. RealTime):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
      locColSel = locCols[locCols %like% 'ite']
      if (length(locColSel) == 0)
        locColSel = locCols[locCols %like% 'eries'][1] # index 1 at the end in case more matches; select 1st
      else if (length(locColSel) > 1) {
        locColSel = locColSel[1]
      }
      #    cat('UI varSelGroup::locColSel ', locColSel, '\n')
      selectInput(
        'inSelGroup',
        'Select one or more facet groupings (e.g. Site, Well, Channel):',
        locCols,
        width = '100%',
        selected = locColSel,
        multiple = TRUE
      )
    }
    
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
dmattek's avatar
Added:    
dmattek committed
138
139
140
141
142
143
144
145
146
147
148
149
    if (!input$chBtrackUni) {
      locCols = getDataNucCols()
      locColSel = locCols[locCols %like% 'ite'][1] # index 1 at the end in case more matches; select 1st
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
150
151
152
153
154
155
156
157
158
159
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
dmattek's avatar
dmattek committed
160
161
      locColSel = locCols[locCols %like% 'objCyto_Intensity_MeanIntensity_imErkCor.*' |
                            locCols %like% 'Ratio'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
162

dmattek's avatar
dmattek committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
      locColSel = locCols[locCols %like% 'objNuc_Intensity_MeanIntensity_imErkCor.*'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
181

dmattek's avatar
dmattek committed
182
183
184
185
186
187
188
189
190
191
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
216
  
dmattek's avatar
dmattek committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
248
249
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
269
270
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
271
272
273
274
    }
  })
  
  
dmattek's avatar
dmattek committed
275
276
277
278
279
280
  # UI for removing outliers
  
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
281
      
dmattek's avatar
dmattek committed
282
283
284
285
286
287
288
289
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
        value = 99, 
        step = 0.1
      )
dmattek's avatar
dmattek committed
290
      
dmattek's avatar
Mod:    
dmattek committed
291
      
dmattek's avatar
dmattek committed
292
293
294
    }
  })
  
dmattek's avatar
dmattek committed
295
296
297
298
299
300
301
302
303
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
304
  
dmattek's avatar
dmattek committed
305
306
307
308
309
310
311
312
313
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
363
  getDataNucCols <- reactive({
364
365
366
367
368
369
370
371
372
373
374
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
375
    cat(file = stderr(), 'dataMod\n')
376
377
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
378
    if (is.null(loc.dt))
379
380
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    if (!input$chBtrackUni) {
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
401
    } else {
dmattek's avatar
Added:    
dmattek committed
402
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
403
404
    }
    
dmattek's avatar
dmattek committed
405
    
406
407
408
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
409
410
411
412
413
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
414
    
dmattek's avatar
dmattek committed
415
416
417
418
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
419
420
  })
  
dmattek's avatar
dmattek committed
421
  # return all unique track object labels (created in dataMod)
dmattek's avatar
dmattek committed
422
  # This will be used to display in UI for trajectory highlighting
dmattek's avatar
dmattek committed
423
424
425
426
427
428
429
430
431
  getDataTrackObjLabUni_afterTrim <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni_afterTrim\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$id))
  })
dmattek's avatar
Mod:    
dmattek committed
432
  
dmattek's avatar
dmattek committed
433
434
435
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
436
437
438
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
439
    
dmattek's avatar
dmattek committed
440
441
442
443
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
444
445
  })
  
dmattek's avatar
dmattek committed
446
447
448
449
450
451
452
453
454
455
456
457
458
  # return dt with cell IDs and their corresponding condition name
  # The condition is the column defined by facet groupings
  getDataCond <- reactive({
    cat(file = stderr(), 'getDataCond\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[, .(id, group)]))
    
  })
  
459
460
461
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
462
  #    realtime - selected from input
dmattek's avatar
dmattek committed
463
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
464
465
466
467
468
  #               (can be a single column or result of an operation on two cols)
  #    id       - trackObjectsLabelUni (created in dataMod)
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
  #               highlight status from UI
469
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
470
    cat(file = stderr(), 'data4trajPlot\n')
471
472
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
473
    if (is.null(loc.dt))
474
475
476
      return(NULL)
    
    
dmattek's avatar
dmattek committed
477
    if (input$inSelMath == '')
478
479
480
481
482
483
484
485
486
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
    # create expression for parsing
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
487
488
489
490
    if(length(input$inSelGroup) == 0)
      return(NULL)
    loc.s.gr = sprintf("paste(%s, sep=';')",
                       paste(input$inSelGroup, sep = '', collapse = ','))
491
492
493
    
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
494
495
496
497
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
    locBut = input$chBhighlightTraj
    
dmattek's avatar
Added:    
dmattek committed
498
499
    
    # Find column names with position
dmattek's avatar
Mod:    
dmattek committed
500
501
    loc.s.pos.x = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*X') | names(loc.dt) %like% c('.*os.x')]
    loc.s.pos.y = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*Y') | names(loc.dt) %like% c('.*os.y')]
dmattek's avatar
Added:    
dmattek committed
502
503
504
505
506
507
    
    if (length(loc.s.pos.x) == 1 & length(loc.s.pos.y) == 1)
      locPos = TRUE
    else
      locPos = FALSE
    
508
509
510
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
    if (sum(names(loc.dt) %in% 'mid.in') > 0) {
dmattek's avatar
Added:    
dmattek committed
511
512
513
514
515
516
      if (locPos) # position columns present
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
          realtime = eval(parse(text = loc.s.rt)),
dmattek's avatar
Mod:    
dmattek committed
517
518
          pos.x = get(loc.s.pos.x),
          pos.y = get(loc.s.pos.y),
dmattek's avatar
Added:    
dmattek committed
519
          mid.in = mid.in
dmattek's avatar
Mod:    
dmattek committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        )] else
          loc.out = loc.dt[, .(
            y = eval(parse(text = loc.s.y)),
            id = trackObjectsLabelUni,
            group = eval(parse(text = loc.s.gr)),
            realtime = eval(parse(text = loc.s.rt)),
            mid.in = mid.in
          )]
        
        
        
        
        # add 3rd level with status of track selection
        # to a column with trajectory filtering status
        if (locBut) {
          loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
        }
        
538
    } else {
dmattek's avatar
Added:    
dmattek committed
539
540
541
542
543
      if (locPos) # position columns present
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
dmattek's avatar
Mod:    
dmattek committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
          realtime = eval(parse(text = loc.s.rt)),
          pos.x = get(loc.s.pos.x),
          pos.y = get(loc.s.pos.y)
        )] else
          loc.out = loc.dt[, .(
            y = eval(parse(text = loc.s.y)),
            id = trackObjectsLabelUni,
            group = eval(parse(text = loc.s.gr)),
            realtime = eval(parse(text = loc.s.rt))
          )]
        
        
        # add a column with status of track selection
        if (locBut) {
          loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
        }
560
    }
561
    
dmattek's avatar
Added:    
dmattek committed
562
563
    # add XY location if present in the dataset
    
dmattek's avatar
dmattek committed
564
565
    # remove NAs
    loc.out = loc.out[complete.cases(loc.out)]
dmattek's avatar
Mod:    
dmattek committed
566
    
dmattek's avatar
dmattek committed
567
568
569
570
    # Trim x-axis (time)
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
571
572
    
    # Normalization
dmattek's avatar
dmattek committed
573
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
574
575
576
577
578
579
580
581
582
583
584
585
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
586
587
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
588
589
590
591
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
592
593
594
595
596
597
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
615
    
dmattek's avatar
dmattek committed
616
    return(loc.out)
dmattek's avatar
dmattek committed
617
618
  })
  
dmattek's avatar
dmattek committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
635
    
dmattek's avatar
dmattek committed
636
637
638
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
639
  }) 
dmattek's avatar
dmattek committed
640
  
dmattek's avatar
dmattek committed
641
642
  
  # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
dmattek committed
643
644
  getDataCl = function(in.dend, in.k, in.ids) {
    cat(file = stderr(), 'getDataCl \n')
dmattek's avatar
Mod:    
dmattek committed
645
    
dmattek's avatar
dmattek committed
646
    loc.dt.cl = data.table(id = in.ids,
dmattek's avatar
dmattek committed
647
648
649
                           cl = cutree(as.dendrogram(in.dend), k = in.k))
  }
  
dmattek's avatar
dmattek committed
650
651
  ####
  ## UI for trajectory plot
dmattek's avatar
dmattek committed
652
  
dmattek's avatar
dmattek committed
653
654
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
655
    
dmattek's avatar
dmattek committed
656
657
658
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
659
    
dmattek's avatar
dmattek committed
660
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
661
    if (!is.null(loc.v)) {
662
      selectInput(
dmattek's avatar
dmattek committed
663
664
665
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
666
        width = '100%',
dmattek's avatar
dmattek committed
667
        multiple = TRUE
668
      )
dmattek's avatar
dmattek committed
669
670
671
    }
  })
  
dmattek's avatar
Mod:    
dmattek committed
672
  callModule(modTrajPlot, 'modTrajPlot', data4trajPlot)
dmattek's avatar
dmattek committed
673
  
dmattek's avatar
Added:    
dmattek committed
674
675
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
676
  
dmattek's avatar
dmattek committed
677
678
  
  
dmattek's avatar
dmattek committed
679
680
681
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
  ##### Hierarchical clustering
  
  output$uiPlotHierClSel = renderUI({
    if(input$chBPlotHierClSel) {
      selectInput('inPlotHierClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  
  userFitDendHier <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    cl.dist = dist(dm.t, method = s.cl.diss[as.numeric(input$selectPlotHierDiss)])
    cl.hc = hclust(cl.dist, method = s.cl.linkage[as.numeric(input$selectPlotHierLinkage)])
    cl.lev = rev(row.names(dm.t))
    
    dend <- as.dendrogram(cl.hc)
    dend <- color_branches(dend, k = input$inPlotHierNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHier <- function() {
    
    loc.dm = data4clust()
    if (is.null(loc.dm))
      return(NULL)
    
    loc.dend <- userFitDendHier()
    if (is.null(loc.dend))
      return(NULL)
    
dmattek's avatar
Mod:    
dmattek committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    loc.p = myPlotHeatmap(loc.dm,
                  loc.dend, 
                  palette.arg = input$selectPlotHierPalette, 
                  palette.rev.arg = input$inPlotHierRevPalette, 
                  dend.show.arg = input$selectPlotHierDend, 
                  key.show.arg = input$selectPlotHierKey, 
                  margin.x.arg = input$inPlotHierMarginX, 
                  margin.y.arg = input$inPlotHierMarginY, 
                  nacol.arg = input$inPlotHierNAcolor, 
                  font.row.arg = input$inPlotHierFontX, 
                  font.col.arg = input$inPlotHierFontY, 
                  title.arg = paste(
                    "Distance measure: ",
                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                    "\nLinkage method: ",
                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)]
                  ))
dmattek's avatar
dmattek committed
739
740
741
742
743
    
    return(loc.p)
  }
  
  
dmattek's avatar
Mod:    
dmattek committed
744
745
746
747
748
  # prepare data for plotting trajectories per cluster
  # outputs dt as data4trajPlot but with an additional column 'cl' that holds cluster numbers
  # additionally some clusters are omitted according to manual selection
  data4trajPlotCl <- reactive({
    cat(file = stderr(), 'data4trajPlotCl: in\n')
dmattek's avatar
dmattek committed
749
    
dmattek's avatar
Mod:    
dmattek committed
750
    loc.dt = data4trajPlot()
dmattek's avatar
dmattek committed
751
752
    
    if (is.null(loc.dt)) {
dmattek's avatar
Mod:    
dmattek committed
753
      cat(file = stderr(), 'data4trajPlotCl: dt is NULL\n')
dmattek's avatar
dmattek committed
754
755
756
      return(NULL)
    }
    
dmattek's avatar
Mod:    
dmattek committed
757
    cat(file = stderr(), 'data4trajPlotCl: dt not NULL\n')
dmattek's avatar
dmattek committed
758
759
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
dmattek committed
760
    loc.dt.cl = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
761
762
763
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # display only selected clusters
dmattek's avatar
Mod:    
dmattek committed
764
765
    if(input$chBPlotHierClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierClSel]
dmattek's avatar
dmattek committed
766
    
dmattek's avatar
Mod:    
dmattek committed
767
768
    return(loc.dt)    
  })
dmattek's avatar
dmattek committed
769
  
dmattek's avatar
Mod:    
dmattek committed
770
771
772
773
  callModule(modTrajPlot, 'modPlotHierTraj', data4trajPlotCl, 'cl',  paste0('clust_hierch_tCourses_',
                                                                            s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                                            '_',
                                                                            s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'))
dmattek's avatar
dmattek committed
774
  
dmattek's avatar
Added:    
dmattek committed
775
  # download a list of cellIDs with cluster assignments
dmattek's avatar
dmattek committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
  output$downCellCl <- downloadHandler(
    filename = function() {
      paste0('clust_hierch_data_',
             s.cl.diss[as.numeric(input$selectPlotHierDiss)],
             '_',
             s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  output$downCellClSpar <- downloadHandler(
    filename = function() {
      paste0('clust_hierchSpar_data_',
             s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
             '_',
             s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  
dmattek's avatar
Mod:    
dmattek committed
803
804
805
806
807
808
  # callModule(downCellCl, 'downDataHier', paste0('clust_hierch_data_',
  #                                               s.cl.diss[as.numeric(input$selectPlotHierDiss)],
  #                                               '_',
  #                                               s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv'),
  #            getDataCl(userFitDendHier, input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim))
  # 
dmattek's avatar
Added:    
dmattek committed
809
  
dmattek's avatar
Mod:    
dmattek committed
810
811
812
813
814
815
816
817
818
819
820
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
  
  # prepare data for barplot with distribution of items per condition  
  data4clDistPlot <- reactive({
    cat(file = stderr(), 'data4clDistPlot: in\n')
dmattek's avatar
dmattek committed
821
822
    
    # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
Mod:    
dmattek committed
823
    loc.dend <- userFitDendHier()
dmattek's avatar
dmattek committed
824
825
826
827
828
829
830
831
832
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClDist: loc.dend is NULL\n')
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(as.dendrogram(loc.dend), k = input$inPlotHierNclust))
    
    
dmattek's avatar
dmattek committed
833
    # get cellIDs with condition name
dmattek's avatar
Mod:    
dmattek committed
834
    loc.dt.gr = getDataCond()
dmattek's avatar
dmattek committed
835
836
837
838
839
840
841
842
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotClDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # display only selected clusters
dmattek's avatar
Mod:    
dmattek committed
843
844
    if(input$chBPlotHierClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierClSel]
dmattek's avatar
dmattek committed
845
846
847
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
dmattek's avatar
Mod:    
dmattek committed
848
    return(loc.dt.aggr)
dmattek's avatar
dmattek committed
849
    
dmattek's avatar
Mod:    
dmattek committed
850
  })
dmattek's avatar
dmattek committed
851
  
dmattek's avatar
Mod:    
dmattek committed
852

dmattek's avatar
dmattek committed
853
854
855
856
857
858
859
860
861
862
863
864
865
  #  Hierarchical - display heatmap
  getPlotHierHeatMapHeight <- function() {
    return (input$inPlotHierHeatMapHeight)
  }
  
  output$outPlotHier <- renderPlot({
    locBut = input$butPlotHierHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHier: Go button not pressed\n')
      
      return(NULL)
    }
dmattek's avatar
Mod:    
dmattek committed
866

dmattek's avatar
dmattek committed
867
868
869
870
    plotHier()
  }, height = getPlotHierHeatMapHeight)
  
  
dmattek's avatar
dmattek committed
871
872
873
874
875
876
  #  Hierarchical - Heat Map - download pdf
  callModule(downPlot, "downPlotHier",       paste0('clust_hierch_heatMap_',
                                                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                    '_',
                                                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'), plotHier)

dmattek's avatar
Mod:    
dmattek committed
877
878
879
880
881
882
  callModule(modClDistPlot, 'hierClDistPlot', data4clDistPlot,
             paste0('clust_hierch_clDist_',
                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                    '_',
                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'))
  
dmattek's avatar
dmattek committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
  
  ##### Sparse hierarchical clustering using sparcl
  
  # UI for advanced options
  output$uiPlotHierSparNperms = renderUI({
    if (input$inHierSparAdv)
      sliderInput(
        'inPlotHierSparNperms',
        'Number of permutations',
        min = 1,
        max = 20,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  # UI for advanced options
  output$uiPlotHierSparNiter = renderUI({
    if (input$inHierSparAdv)
      sliderInput(
        'inPlotHierSparNiter',
        'Number of iterations',
        min = 1,
        max = 50,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  output$uiPlotHierSparClSel = renderUI({
    if(input$chBPlotHierSparClSel) {
      selectInput('inPlotHierSparClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierSparNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  
dmattek's avatar
Mod:    
dmattek committed
923
  
dmattek's avatar
dmattek committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
  getPlotHierSparHeatMapHeight <- function() {
    return (input$inPlotHierSparHeatMapHeight)
  }
  
  userFitHierSpar <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    #cat('rownames: ', rownames(dm.t), '\n')
    
    perm.out <- HierarchicalSparseCluster.permute(
      dm.t,
      wbounds = NULL,
      nperms = ifelse(input$inHierSparAdv, input$inPlotHierSparNperms, 1),
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    
    sparsehc <- HierarchicalSparseCluster(
      dists = perm.out$dists,
      wbound = perm.out$bestw,
      niter = ifelse(input$inHierSparAdv, input$inPlotHierSparNiter, 1),
      method = s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)],
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    return(sparsehc)
  })
  
  
  userFitDendHierSpar <- reactive({
    sparsehc = userFitHierSpar()
    if (is.null(sparsehc)) {
      return()
    }
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHierSpar <- function() {
    
dmattek's avatar
Mod:    
dmattek committed
971
972
    loc.dm = data4clust()
    if (is.null(loc.dm)) {
dmattek's avatar
dmattek committed
973
974
975
976
977
      return()
    }
    
    sparsehc <- userFitHierSpar()
    
dmattek's avatar
Mod:    
dmattek committed
978
979
    loc.dend <- as.dendrogram(sparsehc$hc)
    loc.dend <- color_branches(loc.dend, k = input$inPlotHierSparNclust)
dmattek's avatar
dmattek committed
980
981
982
983
984
985
    
    loc.colnames = paste0(ifelse(sparsehc$ws == 0, "",
                                 ifelse(
                                   sparsehc$ws <= 0.1,
                                   "* ",
                                   ifelse(sparsehc$ws <= 0.5, "** ", "*** ")
dmattek's avatar
Mod:    
dmattek committed
986
                                 )),  colnames(loc.dm))
dmattek's avatar
dmattek committed
987
988
989
990
991
992
993
994
995
    
    loc.colcol   = ifelse(sparsehc$ws == 0,
                          "black",
                          ifelse(
                            sparsehc$ws <= 0.1,
                            "blue",
                            ifelse(sparsehc$ws <= 0.5, "green", "red")
                          ))
    
dmattek's avatar
Mod:    
dmattek committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    loc.p = myPlotHeatmap(loc.dm,
                  loc.dend, 
                  palette.arg = input$selectPlotHierSparPalette, 
                  palette.rev.arg = input$inPlotHierSparRevPalette, 
                  dend.show.arg = input$selectPlotHierSparDend, 
                  key.show.arg = input$selectPlotHierSparKey, 
                  margin.x.arg = input$inPlotHierSparMarginX, 
                  margin.y.arg = input$inPlotHierSparMarginY, 
                  nacol.arg = input$inPlotHierSparNAcolor, 
                  colCol.arg = loc.colcol,
                  labCol.arg = loc.colnames,
                  font.row.arg = input$inPlotHierSparFontX, 
                  font.col.arg = input$inPlotHierSparFontY, 
                  title.arg = paste(
                    "Distance measure: ",
                    s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                    "\nLinkage method: ",
                    s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)]
                  ))
dmattek's avatar
dmattek committed
1015
1016
1017
1018
    
    return(loc.p)
  }
  
dmattek's avatar
Mod:    
dmattek committed
1019
1020
1021
1022
1023
1024
1025
  # prepare data for plotting trajectories per cluster
  # outputs dt as data4trajPlot but with an additional column 'cl' that holds cluster numbers
  # additionally some clusters are omitted according to manual selection
  data4trajPlotClSpar <- reactive({
    cat(file = stderr(), 'data4trajPlotClSpar: in\n')
    
    loc.dt = data4trajPlot()
dmattek's avatar
dmattek committed
1026
1027
    
    if (is.null(loc.dt)) {
dmattek's avatar
Mod:    
dmattek committed
1028
      cat(file = stderr(), 'data4trajPlotClSpar: dt is NULL\n')
dmattek's avatar
dmattek committed
1029
1030
1031
      return(NULL)
    }
    
dmattek's avatar
Mod:    
dmattek committed
1032
    cat(file = stderr(), 'data4trajPlotClSpar: dt not NULL\n')
dmattek's avatar
dmattek committed
1033
1034
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
Mod:    
dmattek committed
1035
    loc.dt.cl = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
1036
1037
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
dmattek's avatar
Mod:    
dmattek committed
1038
1039
1040
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
dmattek's avatar
dmattek committed
1041
    
dmattek's avatar
Mod:    
dmattek committed
1042
1043
    return(loc.dt)    
  })
dmattek's avatar
dmattek committed
1044
  
dmattek's avatar
Mod:    
dmattek committed
1045
1046
1047
1048
1049
  callModule(modTrajPlot, 'modPlotHierSparTraj', data4trajPlotClSpar, 'cl', paste0('clust_hierchSparse_tCourses_',
                                                                                   s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                                                   '_',
                                                                                   s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))

dmattek's avatar
dmattek committed
1050
  
dmattek's avatar
Mod:    
dmattek committed
1051
1052
1053
1054
  
  # prepare data for barplot with distribution of items per condition  
  data4clSparDistPlot <- reactive({
    cat(file = stderr(), 'data4clSparDistPlot: in\n')
dmattek's avatar
dmattek committed
1055
1056
    
    # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
Mod:    
dmattek committed
1057
1058
1059
    loc.dend <- userFitHierSpar()
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClSparDist: loc.dend is NULL\n')
dmattek's avatar
dmattek committed
1060
1061
1062
1063
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
dmattek's avatar
Mod:    
dmattek committed
1064
                           cl = cutree(as.dendrogram(loc.dend$hc), k = input$inPlotHierSparNclust))
dmattek's avatar
dmattek committed
1065
1066
    
    
dmattek's avatar
Mod:    
dmattek committed
1067
1068
    # get cellIDs with condition name
    loc.dt.gr = getDataCond()
dmattek's avatar
dmattek committed
1069
    if (is.null(loc.dt.gr)) {
dmattek's avatar
Mod:    
dmattek committed
1070
      cat(file = stderr(), 'plotClSparDist: loc.dt.gr is NULL\n')
dmattek's avatar
dmattek committed
1071
1072
1073
1074
1075
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
dmattek's avatar
Mod:    
dmattek committed
1076
1077
1078
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
dmattek's avatar
dmattek committed
1079
1080
1081
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
dmattek's avatar
Mod:    
dmattek committed
1082
    return(loc.dt.aggr)
dmattek's avatar
dmattek committed
1083
    
dmattek's avatar
Mod:    
dmattek committed
1084
1085
1086
1087
1088
1089
1090
1091
  })
  
  callModule(modClDistPlot, 'hierClSparDistPlot', data4clSparDistPlot,
             paste0('clust_hierchSparse_clDist_',
                    s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                    '_',
                    s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
  
dmattek's avatar
dmattek committed
1092

dmattek's avatar
Mod:    
dmattek committed
1093
  
dmattek's avatar
dmattek committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
  # Sparse Hierarchical - display heatmap
  output$outPlotHierSpar <- renderPlot({
    locBut = input$butPlotHierSparHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSpar: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSpar()
  }, height = getPlotHierSparHeatMapHeight)
  
  # Sparse Hierarchical - Heat Map - download pdf
dmattek's avatar
dmattek committed
1108
1109
1110
  callModule(downPlot, "downPlotHierSparHM",       paste0('clust_hierchSparse_heatMap_',
                                                          s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                          '_',
dmattek's avatar
Mod:    
dmattek committed
1111
                                                          s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'), plotHierSpar)
dmattek's avatar
dmattek committed
1112
  
dmattek's avatar
dmattek committed
1113

dmattek's avatar
dmattek committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
  # Sparse Hierarchical clustering (sparcl) interactive version
  output$plotHierSparInt <- renderD3heatmap({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    if (input$inPlotHierSparRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(dend)
    col_labels <- col_labels[order(order.dendrogram(dend))]
    
    if (input$selectPlotHierSparDend == 1)
      assign("var.tmp", dend)
    else
      assign("var.tmp", FALSE)
    
    
    loc.colnames = paste0(colnames(dm.t), ifelse(sparsehc$ws == 0, "",
                                                 ifelse(
                                                   sparsehc$ws <= 0.1,
                                                   " *",
                                                   ifelse(sparsehc$ws <= 0.5, " **", " ***")
                                                 )))
    
    d3heatmap(
      dm.t,
      Rowv = var.tmp,
      dendrogram = ifelse(input$selectPlotHierSparDend == 1, "row", 'none'),
      trace = "none",
      revC = FALSE,
      na.rm = FALSE,
      margins = c(
        input$inPlotHierSparMarginX * 10,
        input$inPlotHierSparMarginY * 10
      ),
      colors = my_palette,
      na.col = grey(input$inPlotHierSparNAcolor),
      cexRow = input$inPlotHierSparFontY,
      cexCol = input$inPlotHierSparFontX,
      xaxis_height = input$inPlotHierSparMarginX * 10,
      yaxis_width = input$inPlotHierSparMarginY * 10,
      show_grid = TRUE,
      #labRow = rownames(dm.t),
      labCol = loc.colnames
    )
  })
dmattek's avatar
Mod:    
dmattek committed
1172
1173
  
  #callModule(clustBay, 'TabClustBay', data4clust)
1174
  
dmattek's avatar
dmattek committed
1175
})