server.R 23.9 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4 5 6 7 8 9 10 11 12 13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16 17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
18
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
19 20 21
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
Added:  
dmattek committed
22 23
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
24
library(tca) # for time series manipulatiom, e.g. normTraj, genTraj, plotTrajRibbon
dmattek's avatar
dmattek committed
25

26
# increase file upload limit
dmattek's avatar
Added:  
dmattek committed
27
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
28

dmattek's avatar
dmattek committed
29
shinyServer(function(input, output, session) {
30
  useShinyjs()
dmattek's avatar
dmattek committed
31
  
32 33 34 35 36 37
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:  
dmattek committed
38 39
    dataLoadNuc  = isolate(input$inButLoadNuc),
    dataLoadTrajRem = isolate(input$inButLoadTrajRem)
40
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
41 42
  )
  
dmattek's avatar
dmattek committed
43 44 45
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
46
  # FILE LOAD
47 48 49 50 51 52 53 54 55 56
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
57
    return(tca::genTraj(in.nwells = 3))
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
74 75 76 77 78 79 80
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
Added:  
dmattek committed
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

  # load main data file
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
114 115
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
116 117 118
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
119
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
120 121 122
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
123
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
124 125 126 127 128 129 130 131 132
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
133
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
134 135 136
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
137
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
138 139 140 141 142
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
143 144 145 146 147 148 149 150 151 152 153 154 155

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
    numericInput(
      'inSelTimeFreq',
      'Provide time frequency:',
      min = 1,
      step = 1,
      width = '100%',
      value = 1
    )
  })
dmattek's avatar
dmattek committed
156 157 158 159 160 161 162 163
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
164 165 166 167 168
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
169 170 171
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
172 173 174 175 176 177 178 179
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
180 181 182 183 184 185 186
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
187
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
188
      locCols = getDataNucCols()
189
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
190 191 192 193 194 195 196 197 198
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
199 200 201 202 203 204 205 206 207 208
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
209
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
210

dmattek's avatar
dmattek committed
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
228
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
229

dmattek's avatar
dmattek committed
230 231 232 233 234 235 236 237 238 239
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
264
  
dmattek's avatar
dmattek committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
296 297
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
317 318
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
319 320 321 322
    }
  })
  
  
dmattek's avatar
dmattek committed
323 324 325 326 327
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:  
dmattek committed
328
      
dmattek's avatar
dmattek committed
329 330 331 332 333
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:  
dmattek committed
334
        value = 99.5, 
dmattek's avatar
dmattek committed
335 336
        step = 0.1
      )
dmattek's avatar
dmattek committed
337
      
dmattek's avatar
Mod:  
dmattek committed
338
      
dmattek's avatar
dmattek committed
339 340 341
    }
  })
  
dmattek's avatar
dmattek committed
342 343 344 345 346 347 348 349 350
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
351
  
dmattek's avatar
dmattek committed
352 353 354
  ####
  ## data processing
  
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
403
  getDataNucCols <- reactive({
404 405 406 407 408 409 410 411 412 413 414
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
415
    cat(file = stderr(), 'dataMod\n')
416 417
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
418
    if (is.null(loc.dt))
419 420
      return(NULL)
    
421
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:  
dmattek committed
441
    } else {
dmattek's avatar
Added:  
dmattek committed
442
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
443 444
    }
    
dmattek's avatar
dmattek committed
445
    
dmattek's avatar
Added:  
dmattek committed
446 447 448 449 450 451
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
452
      print(loc.dt.rem)
dmattek's avatar
dmattek committed
453
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
454 455
    }
    
456 457 458
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
459 460 461 462 463
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
464
    
dmattek's avatar
dmattek committed
465 466 467 468
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
469 470
  })
  
dmattek's avatar
Mod:  
dmattek committed
471
  
dmattek's avatar
dmattek committed
472 473 474
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
475 476 477
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
478
    
dmattek's avatar
dmattek committed
479 480 481 482
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
483 484
  })
  
dmattek's avatar
dmattek committed
485
  
486 487 488
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
489
  #    realtime - selected from input
dmattek's avatar
dmattek committed
490
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
491
  #               (can be a single column or result of an operation on two cols)
492 493
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
494 495
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
496 497 498 499
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
500
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
501
    cat(file = stderr(), 'data4trajPlot\n')
502 503
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
504
    if (is.null(loc.dt))
505 506
      return(NULL)
    
507
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
508
    if (input$inSelMath == '')
509 510 511 512 513 514
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
515
    # create expression for 'group' column
516 517
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
518 519 520 521 522 523 524 525 526 527 528
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
529
    
dmattek's avatar
dmattek committed
530 531

    # column name with time
532 533
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
534 535
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
536
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
537
    
dmattek's avatar
Added:  
dmattek committed
538 539
    
    # Find column names with position
540
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
541
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
542
    
543
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
544 545
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
546 547 548 549
      locPos = TRUE
    else
      locPos = FALSE
    
550 551 552 553
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
554 555 556 557 558 559
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
560
      loc.s.objnum = loc.s.objnum[1]
561
      locObjNum = TRUE
dmattek's avatar
dmattek committed
562
    }
563 564
    
    
565 566
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:  
dmattek committed
609
        # add a column with status of track selection
610
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
611
    }
612
      
dmattek's avatar
dmattek committed
613

614
    ## Interpolate NA's and data points that are missing
615
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
616 617 618 619 620
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
    # Therefore, we cnanot rely on that info to get time frequency; user provides this number!
    
621
    setkey(loc.out, group, id, realtime)
622 623 624
    
    # here we fill missing data with NA's
    loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime), max(realtime), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
625

dmattek's avatar
dmattek committed
626 627 628 629
    # x-check: print all rows with NA's
    print('Rows with NAs:')
    print(loc.out[rowSums(is.na(loc.out)) > 0, ])
    
630 631
    # NA's may be already present in the dataset'.
    # Interpolate (linear) them with na.interpolate as well
632
    if(locPos)
dmattek's avatar
dmattek committed
633
      s.cols = c('y', 'pos.x', 'pos.y')
634
    else
dmattek's avatar
dmattek committed
635
      s.cols = c('y')
636 637
    
    loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
dmattek's avatar
dmattek committed
638 639 640 641 642 643 644 645 646 647 648 649
    

    # !!! Current issue with interpolation:
    # The column mid.in is not taken into account.
    # If a trajectory is selected in the UI,
    # the mid.in column is added (if it doesn't already exist in the dataset),
    # and for the interpolated point, it will still be NA. Not really an issue.
    #
    # Also, think about the current option of having mid.in column in the uploaded dataset.
    # Keep it? Expand it?
    # Create a UI filed for selecting the column with mid.in data.
    # What to do with that column during interpolation (see above)
dmattek's avatar
Mod:  
dmattek committed
650
    
651
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
652 653 654
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
655
    
656
    ## Normalization
dmattek's avatar
dmattek committed
657
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
658
    if (input$chBnorm) {
659
      loc.out = tca::normTraj(
dmattek's avatar
dmattek committed
660 661 662 663 664 665 666 667 668 669
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
670 671
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
672 673 674 675
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
676 677 678 679 680 681
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:  
dmattek committed
699
    
dmattek's avatar
dmattek committed
700
    return(loc.out)
dmattek's avatar
dmattek committed
701 702
  })
  
dmattek's avatar
dmattek committed
703 704 705 706 707 708 709 710 711 712 713 714 715
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:  
dmattek committed
716
    #print(loc.dt)
dmattek's avatar
dmattek committed
717
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:  
dmattek committed
718
    #print(loc.out)
dmattek's avatar
dmattek committed
719 720
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:  
dmattek committed
721
    
dmattek's avatar
dmattek committed
722 723
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
724 725 726 727 728 729 730
    
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
    loc.out = t(na.interpolation(t(loc.out)))
    
dmattek's avatar
dmattek committed
731
    return(loc.out)
dmattek's avatar
Mod:  
dmattek committed
732
  }) 
dmattek's avatar
dmattek committed
733
  
dmattek's avatar
dmattek committed
734
  
dmattek's avatar
Added:  
dmattek committed
735 736 737 738 739 740 741 742 743
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
744 745
  ###### Trajectory plotting
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
746 747
             in.data = data4trajPlot,
             in.fname = function() return( "tCoursesMeans.pdf"))
dmattek's avatar
dmattek committed
748
  
749
  ###### Trajectory plotting
750 751 752
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
             in.fname = function() {return( "tCourses.pdf")})
753 754 755
  
  ## UI for selecting trajectories
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
756 757
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
758
    
dmattek's avatar
dmattek committed
759 760 761
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
762
    
dmattek's avatar
dmattek committed
763
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
764
    if (!is.null(loc.v)) {
765
      selectInput(
dmattek's avatar
dmattek committed
766 767 768
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
769
        width = '100%',
dmattek's avatar
dmattek committed
770
        multiple = TRUE
771
      )
dmattek's avatar
dmattek committed
772 773 774
    }
  })
  
775
  ###### AUC calculation and plotting
776
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
Added:  
dmattek committed
777
  
dmattek's avatar
Added:  
dmattek committed
778
  ###### Box-plot
779
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
780
  
dmattek's avatar
dmattek committed
781
  ###### Scatter plot
782
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
783
  
dmattek's avatar
dmattek committed
784
  ##### Hierarchical clustering
dmattek's avatar
Added:  
dmattek committed
785
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
786 787
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
Added:  
dmattek committed
788
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
789

dmattek's avatar
Mod:  
dmattek committed
790
  
dmattek's avatar
dmattek committed
791
})