server.R 23.9 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
18
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
19
20
21
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
22
23
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
24
library(tca) # for time series manipulatiom, e.g. normTraj, genTraj, plotTrajRibbon
dmattek's avatar
dmattek committed
25

26
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
27
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
28

dmattek's avatar
dmattek committed
29
shinyServer(function(input, output, session) {
30
  useShinyjs()
dmattek's avatar
dmattek committed
31
  
32
33
34
35
36
37
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:    
dmattek committed
38
39
    dataLoadNuc  = isolate(input$inButLoadNuc),
    dataLoadTrajRem = isolate(input$inButLoadTrajRem)
40
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
41
42
  )
  
dmattek's avatar
dmattek committed
43
44
45
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
46
  # FILE LOAD
47
48
49
50
51
52
53
54
55
56
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
57
    return(tca::genTraj(in.nwells = 3))
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
74
75
76
77
78
79
80
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
Added:    
dmattek committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

  # load main data file
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
114
115
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
116
117
118
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
119
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
120
121
122
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
123
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
124
125
126
127
128
129
130
131
132
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
133
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
134
135
136
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
137
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
138
139
140
141
142
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
143
144
145
146
147
148
149
150
151
152
153
154
155

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
    numericInput(
      'inSelTimeFreq',
      'Provide time frequency:',
      min = 1,
      step = 1,
      width = '100%',
      value = 1
    )
  })
dmattek's avatar
dmattek committed
156
157
158
159
160
161
162
163
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
164
165
166
167
168
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
169
170
171
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
172
173
174
175
176
177
178
179
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
180
181
182
183
184
185
186
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
187
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
188
      locCols = getDataNucCols()
189
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
190
191
192
193
194
195
196
197
198
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
199
200
201
202
203
204
205
206
207
208
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
209
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
210

dmattek's avatar
dmattek committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
228
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
229

dmattek's avatar
dmattek committed
230
231
232
233
234
235
236
237
238
239
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
264
  
dmattek's avatar
dmattek committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
296
297
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
317
318
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
319
320
321
322
    }
  })
  
  
dmattek's avatar
dmattek committed
323
324
325
326
327
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
328
      
dmattek's avatar
dmattek committed
329
330
331
332
333
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
334
        value = 99.5, 
dmattek's avatar
dmattek committed
335
336
        step = 0.1
      )
dmattek's avatar
dmattek committed
337
      
dmattek's avatar
Mod:    
dmattek committed
338
      
dmattek's avatar
dmattek committed
339
340
341
    }
  })
  
dmattek's avatar
dmattek committed
342
343
344
345
346
347
348
349
350
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
351
  
dmattek's avatar
dmattek committed
352
353
354
  ####
  ## data processing
  
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
403
  getDataNucCols <- reactive({
404
405
406
407
408
409
410
411
412
413
414
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
415
    cat(file = stderr(), 'dataMod\n')
416
417
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
418
    if (is.null(loc.dt))
419
420
      return(NULL)
    
421
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
441
    } else {
dmattek's avatar
Added:    
dmattek committed
442
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
443
444
    }
    
dmattek's avatar
dmattek committed
445
    
dmattek's avatar
Added:    
dmattek committed
446
447
448
449
450
451
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
452
      print(loc.dt.rem)
dmattek's avatar
dmattek committed
453
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
454
455
    }
    
456
457
458
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
459
460
461
462
463
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
464
    
dmattek's avatar
dmattek committed
465
466
467
468
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
469
470
  })
  
dmattek's avatar
Mod:    
dmattek committed
471
  
dmattek's avatar
dmattek committed
472
473
474
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
475
476
477
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
478
    
dmattek's avatar
dmattek committed
479
480
481
482
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
483
484
  })
  
dmattek's avatar
dmattek committed
485
  
486
487
488
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
489
  #    realtime - selected from input
dmattek's avatar
dmattek committed
490
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
491
  #               (can be a single column or result of an operation on two cols)
492
493
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
494
495
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
496
497
498
499
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
500
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
501
    cat(file = stderr(), 'data4trajPlot\n')
502
503
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
504
    if (is.null(loc.dt))
505
506
      return(NULL)
    
507
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
508
    if (input$inSelMath == '')
509
510
511
512
513
514
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
515
    # create expression for 'group' column
516
517
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
518
519
520
521
522
523
524
525
526
527
528
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
529
    
dmattek's avatar
dmattek committed
530
531

    # column name with time
532
533
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
534
535
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
536
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
537
    
dmattek's avatar
Added:    
dmattek committed
538
539
    
    # Find column names with position
540
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
541
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
542
    
543
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
544
545
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
546
547
548
549
      locPos = TRUE
    else
      locPos = FALSE
    
550
551
552
553
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
554
555
556
557
558
559
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
560
      loc.s.objnum = loc.s.objnum[1]
561
      locObjNum = TRUE
dmattek's avatar
dmattek committed
562
    }
563
564
    
    
565
566
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
609
        # add a column with status of track selection
610
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
611
    }
612
      
dmattek's avatar
dmattek committed
613

614
    ## Interpolate NA's and data points that are missing
615
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
616
617
618
619
620
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
    # Therefore, we cnanot rely on that info to get time frequency; user provides this number!
    
621
    setkey(loc.out, group, id, realtime)
622
623
624
    
    # here we fill missing data with NA's
    loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime), max(realtime), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
625

dmattek's avatar
dmattek committed
626
627
628
629
    # x-check: print all rows with NA's
    print('Rows with NAs:')
    print(loc.out[rowSums(is.na(loc.out)) > 0, ])
    
630
631
    # NA's may be already present in the dataset'.
    # Interpolate (linear) them with na.interpolate as well
632
    if(locPos)
dmattek's avatar
dmattek committed
633
      s.cols = c('y', 'pos.x', 'pos.y')
634
    else
dmattek's avatar
dmattek committed
635
      s.cols = c('y')
636
637
    
    loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
dmattek's avatar
dmattek committed
638
639
640
641
642
643
644
645
646
647
648
649
    

    # !!! Current issue with interpolation:
    # The column mid.in is not taken into account.
    # If a trajectory is selected in the UI,
    # the mid.in column is added (if it doesn't already exist in the dataset),
    # and for the interpolated point, it will still be NA. Not really an issue.
    #
    # Also, think about the current option of having mid.in column in the uploaded dataset.
    # Keep it? Expand it?
    # Create a UI filed for selecting the column with mid.in data.
    # What to do with that column during interpolation (see above)
dmattek's avatar
Mod:    
dmattek committed
650
    
651
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
652
653
654
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
655
    
656
    ## Normalization
dmattek's avatar
dmattek committed
657
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
658
    if (input$chBnorm) {
659
      loc.out = tca::normTraj(
dmattek's avatar
dmattek committed
660
661
662
663
664
665
666
667
668
669
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
670
671
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
672
673
674
675
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
676
677
678
679
680
681
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
699
    
dmattek's avatar
dmattek committed
700
    return(loc.out)
dmattek's avatar
dmattek committed
701
702
  })
  
dmattek's avatar
dmattek committed
703
704
705
706
707
708
709
710
711
712
713
714
715
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
716
    #print(loc.dt)
dmattek's avatar
dmattek committed
717
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
718
    #print(loc.out)
dmattek's avatar
dmattek committed
719
720
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
721
    
dmattek's avatar
dmattek committed
722
723
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
724
725
726
727
728
729
730
    
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
    loc.out = t(na.interpolation(t(loc.out)))
    
dmattek's avatar
dmattek committed
731
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
732
  }) 
dmattek's avatar
dmattek committed
733
  
dmattek's avatar
dmattek committed
734
  
dmattek's avatar
Added:    
dmattek committed
735
736
737
738
739
740
741
742
743
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
744
745
  ###### Trajectory plotting
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
746
747
             in.data = data4trajPlot,
             in.fname = function() return( "tCoursesMeans.pdf"))
dmattek's avatar
dmattek committed
748
  
749
  ###### Trajectory plotting
750
751
752
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
             in.fname = function() {return( "tCourses.pdf")})
753
754
755
  
  ## UI for selecting trajectories
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
756
757
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
758
    
dmattek's avatar
dmattek committed
759
760
761
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
762
    
dmattek's avatar
dmattek committed
763
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
764
    if (!is.null(loc.v)) {
765
      selectInput(
dmattek's avatar
dmattek committed
766
767
768
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
769
        width = '100%',
dmattek's avatar
dmattek committed
770
        multiple = TRUE
771
      )
dmattek's avatar
dmattek committed
772
773
774
    }
  })
  
775
  ###### AUC calculation and plotting
776
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
Added:    
dmattek committed
777
  
dmattek's avatar
Added:    
dmattek committed
778
  ###### Box-plot
779
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
780
  
dmattek's avatar
dmattek committed
781
  ###### Scatter plot
782
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
783
  
dmattek's avatar
dmattek committed
784
  ##### Hierarchical clustering
dmattek's avatar
Added:    
dmattek committed
785
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
786
787
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
Added:    
dmattek committed
788
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
789

dmattek's avatar
Mod:    
dmattek committed
790
  
dmattek's avatar
dmattek committed
791
})