auxfunc.R 20.4 KB
Newer Older
dmattek's avatar
dmattek committed
1
## Custom plotting
dmattek's avatar
dmattek committed
2
require(ggplot2)
dmattek's avatar
Mod:    
dmattek committed
3
4
5
require(RColorBrewer)
require(gplots) # for heatmap.2
require(grid) # for modifying grob
dmattek's avatar
dmattek committed
6

dmattek's avatar
dmattek committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

dmattek's avatar
dmattek committed
32
33
34
35
36
37
38
39
40
41
42
43
44
s.cl.linkage = c("ward.D",
                 "ward.D2",
                 "single",
                 "complete",
                 "average",
                 "mcquitty",
                 "centroid")

s.cl.spar.linkage = c("average",
                      "complete", 
                      "single",
                      "centroid")

dmattek's avatar
Added:    
dmattek committed
45
s.cl.diss = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "DTW")
dmattek's avatar
dmattek committed
46
47
48
49
50
51
52
53
54
55
56
57
s.cl.spar.diss = c("squared.distance","absolute.value")

l.col.pal = list(
  "White-Orange-Red" = 'OrRd',
  "Yellow-Orange-Red" = 'YlOrRd',
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
  "Blues" = "Blues",
  "Spectral" = 'Spectral'
)

dmattek's avatar
Added:    
dmattek committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Creates a popup with help text
# From: https://gist.github.com/jcheng5/5913297
helpPopup <- function(title, content,
                      placement=c('right', 'top', 'left', 'bottom'),
                      trigger=c('click', 'hover', 'focus', 'manual')) {
  tagList(
    singleton(
      tags$head(
        tags$script("$(function() { $(\"[data-toggle='popover']\").popover(); })")
      )
    ),
    tags$a(
      href = "#", class = "btn btn-mini", `data-toggle` = "popover",
      title = title, `data-content` = content, `data-animation` = TRUE,
      `data-placement` = match.arg(placement, several.ok=TRUE)[1],
      `data-trigger` = match.arg(trigger, several.ok=TRUE)[1],
      #tags$i(class="icon-question-sign")
      # changed based on http://stackoverflow.com/questions/30436013/info-bubble-text-in-a-shiny-interface
      icon("question")
    )
  )
}

help.text = c(
  'Accepts CSV file with a column of cell IDs for removal. 
                   IDs should correspond to those used for plotting. 
  Say, the main data file contains columns Metadata_Site and TrackLabel. 
  These two columns should be then selected in UI to form a unique cell ID, e.g. 001_0001 where former part corresponds to Metadata_Site and the latter to TrackLabel.',
  'Plotting and data processing requires a unique cell ID across entire dataset. A typical dataset from CellProfiler assigns unique cell ID (TrackLabel) within each field of view (Metadata_Site).
                   Therefore, a unique ID is created by concatenating these two columns. If the dataset already contains a unique ID, check this box and select a single column only.'
)


#####
dmattek's avatar
dmattek committed
92
## Functions for clustering 
dmattek's avatar
Added:    
dmattek committed
93

dmattek's avatar
dmattek committed
94
95
96
97
98
99
100
101
102

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:    
dmattek committed
103
104
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
105
106
107
108
109
110
111
112
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = names(loc.m),
                         cl = loc.m)
  
113
114
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
115
  return(loc.dt.cl)
dmattek's avatar
Added:    
dmattek committed
116
117
}

dmattek's avatar
dmattek committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
137
138
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
139
140
141
142
143
  return(loc.dt.cl)
}



dmattek's avatar
Added:    
dmattek committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
    data.table(cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
               cl.col = loc.col_labels)))
}


#####
## Common plotting functions
dmattek's avatar
dmattek committed
159

dmattek's avatar
Mod:    
dmattek committed
160
161
162
163
164
165
166
167
168
169
170
171
myGgplotTraj = function(dt.arg, # data table
                        x.arg,  # string with column name for x-axis
                        y.arg, # string with column name for y-axis
                        group.arg, # string with column name for grouping time series (typicaly cell ID)
                        facet.arg, # string with column name for facetting
                        facet.ncol.arg = 2, # default number of facet columns
                        facet.color.arg = NULL, # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                        line.col.arg = NULL, # string with column name for colouring time series (typically when individual time series are selected in UI)
                        xlab.arg = NULL, # string with x-axis label
                        ylab.arg = NULL, # string with y-axis label
                        plotlab.arg = NULL, # string with plot label
                        dt.stim.arg = NULL, # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
dmattek's avatar
dmattek committed
172
                        tfreq.arg = 1,
dmattek's avatar
dmattek committed
173
                        ylim.arg = NULL,
dmattek's avatar
dmattek committed
174
                        stim.bar.height.arg = 0.1,
dmattek's avatar
Added:    
dmattek committed
175
                        stim.bar.width.arg = 0.5,
dmattek's avatar
Mod:    
dmattek committed
176
                        aux.label1 = NULL, # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
dmattek's avatar
Added:    
dmattek committed
177
                        aux.label2 = NULL,
178
                        aux.label3 = NULL,
dmattek's avatar
Added:    
dmattek committed
179
180
181
182
183
                        stat.arg = c('', 'mean', 'CI', 'SE')) {
  
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)

dmattek's avatar
Added:    
dmattek committed
184
185
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
186
187
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
188
                            y = y.arg,
dmattek's avatar
Added:    
dmattek committed
189
190
                            group = group.arg,
                            label  = aux.label1,
191
192
                            label2 = aux.label2,
                            label3 = aux.label3))
dmattek's avatar
dmattek committed
193
  
dmattek's avatar
dmattek committed
194
195
196
197
198
199
200
201
202
203
204
205
206
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
Mod:    
dmattek committed
207
208
209
210
211
212
213
214
215
216

  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {

    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:    
dmattek committed
217
218
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:    
dmattek committed
219
220
221
222
223
    p.tmp = p.tmp +
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
224
  
dmattek's avatar
Added:    
dmattek committed
225
226
  if ('mean' %in% loc.stat)
    p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
227
228
229
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.y = mean,
dmattek's avatar
Added:    
dmattek committed
230
      colour = 'red',
dmattek's avatar
dmattek committed
231
232
233
234
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:    
dmattek committed
235
236
237
238
239
240
241
242
    )

  if ('CI' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
243
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
244
245
246
247
248
249
250
251
252
253
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
254
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
255
256
257
258
259
260
261
      geom = "ribbon",
      group = 1
    )
  
  
  
  p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
  
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes(x = Stimulation_time - tfreq.arg,
                                     xend = Stimulation_time - tfreq.arg,
                                     y = ylim.arg[1],
                                     yend = ylim.arg[1] + abs(ylim.arg[2] - ylim.arg[1]) * stim.bar.height.arg),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }
  
dmattek's avatar
dmattek committed
277
278
279
  if (!is.null(ylim.arg)) 
    p.tmp = p.tmp + coord_cartesian(ylim = ylim.arg)
  
dmattek's avatar
dmattek committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
    theme_bw(base_size = 18, base_family = "Helvetica") +
    theme(
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line.x = element_line(color = "black", size = 0.25),
      axis.line.y = element_line(color = "black", size = 0.25),
      axis.text.x = element_text(size = 12),
      axis.text.y = element_text(size = 12),
      strip.text.x = element_text(size = 14, face = "bold"),
      strip.text.y = element_text(size = 14, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"),
      legend.position = "top"
    )
  
dmattek's avatar
Mod:    
dmattek committed
302
303
304
305
  

  
  return(p.tmp)
dmattek's avatar
dmattek committed
306
307
308
309
310
311
}


userDataGen <- function() {  
  cat(file=stderr(), 'userDataGen: in\n')
  
312
  locNtp = 60
dmattek's avatar
dmattek committed
313
  locNtracks = 10
314
  locNsites = 6
315
316
  locNwells = 1
  
317
318
  x.rand.1 = c(rnorm(locNtp * locNtracks * locNsites * 1/3, 0.5, 0.1), rnorm(locNtp * locNtracks * locNsites * 1/3,   1, 0.2), rnorm(locNtp * locNtracks * locNsites * 1/3,  2, 0.5))
  x.rand.2 = c(rnorm(locNtp * locNtracks * locNsites * 1/3, 0.25, 0.1), rnorm(locNtp * locNtracks * locNsites * 1/3, 0.5, 0.2),  rnorm(locNtp * locNtracks * locNsites * 1/3, 1, 0.2))
dmattek's avatar
dmattek committed
319
320
321
322
323

  # add NA's for testing
  x.rand.1[c(10,20,30)] = NA
  
  #  x.rand.3 = rep(rnorm(locNtracks, 2, 0.5), 1, each = locNtp)
dmattek's avatar
Mod:    
dmattek committed
324
#  x.rand.4 = rep(rnorm(locNtracks, 1, 0.1), 1, each = locNtp)
325
  
dmattek's avatar
Mod:    
dmattek committed
326
327
#  x.arg = rep(seq(0, locNtp-1) / locNtp * 4 * pi, locNtracks * locNsites)
  x.arg = rep(seq(1, locNtp), locNtracks * locNsites)
dmattek's avatar
dmattek committed
328
329
330
  
  dt.nuc = data.table(Metadata_Site = rep(1:locNsites, each = locNtp * locNtracks),
                      Metadata_Well = rep(1:locNwells, each = locNtp * locNsites * locNtracks / locNwells),
331
                      Metadata_RealTime = x.arg,
dmattek's avatar
Mod:    
dmattek committed
332
333
334
335
336
                      objCyto_Intensity_MeanIntensity_imErkCor = x.rand.1,
                      objNuc_Intensity_MeanIntensity_imErkCor  = x.rand.2,
                      objNuc_Location_X = runif(locNtp * locNtracks * locNsites, min = 0, max = 1),
                      objNuc_Location_Y = runif(locNtp * locNtracks * locNsites, min = 0, max = 1),
#                      objCyto_Intensity_MeanIntensity_imErkCor = x.rand.3 + ifelse(x.arg < 4, 0, 1) / x.rand.3,
337
#                      objNuc_Intensity_MeanIntensity_imErkCor  = c(rnorm(locNtp * locNtracks * locNsites * 0.5, .25, 0.1), rnorm(locNtp * locNtracks * locNsites * 0.5, .5, 0.2)),
dmattek's avatar
dmattek committed
338
339
340
341
                      TrackLabel = rep(1:(locNtracks*locNsites), each = locNtp))
  
  return(dt.nuc)
}
dmattek's avatar
dmattek committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367


# Returns original dt with an additional column with normalized quantity.
# The column to be normalised is given by 'in.meas.col'.
# The name of additional column is the same as in.meas.col but with ".norm" suffix added.
# Normalisation is based on part of the trajectory;
# this is defined by in.rt.min and max, and the column with time in.rt.col.
# Additional parameters:
# in.by.cols - character vector with 'by' columns to calculate normalisation per group
#              if NULL, no grouping is done
# in.robust - whether robust measures should be used (median instead of mean, mad instead of sd)
# in.type - type of normalization: z.score or mean (fi.e. old change w.r.t. mean)

myNorm = function(in.dt,
                  in.meas.col,
                  in.rt.col = 'RealTime',
                  in.rt.min = 10,
                  in.rt.max = 20,
                  in.by.cols = NULL,
                  in.robust = TRUE,
                  in.type = 'z.score') {
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
dmattek's avatar
Fixed:    
dmattek committed
368
369
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
dmattek's avatar
dmattek committed
370
371
                                                               meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
dmattek's avatar
Fixed:    
dmattek committed
372
373
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
dmattek's avatar
dmattek committed
374
375
376
377
378
                                                               meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
dmattek's avatar
Fixed:    
dmattek committed
379
380
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
dmattek's avatar
dmattek committed
381
382
                                                               meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
dmattek's avatar
Fixed:    
dmattek committed
383
384
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
dmattek's avatar
dmattek committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
                                                               meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
dmattek's avatar
dmattek committed
401
402
}

dmattek's avatar
dmattek committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Plots a scatter plot with marginal histograms
# Points are connected by a line (grouping by cellID)
#
# Assumes an input of data.table with
# x, y - columns with x and y coordinates
# id - a unique point identifier (here corresponds to cellID)
# mid - a (0,1) column by which points are coloured (here corresponds to whether cells are within bounds)

myGgplotScat = function(dt.arg,
                        band.arg = NULL,
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
                        group.col.arg = NULL) {
  p.tmp = ggplot(dt.arg, aes(x = x, y = y))
  
  if (is.null(group.col.arg)) {
    p.tmp = p.tmp +
      geom_point(alpha = alpha.arg, aes(group = id))
  } else {
    p.tmp = p.tmp +
      geom_point(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      geom_path(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      scale_color_manual(name = group.col.arg, values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green'))
  }
  
  if (is.null(band.arg))
    p.tmp = p.tmp +
      stat_smooth(
        method = function(formula, data, weights = weight)
          rlm(formula, data, weights = weight, method = 'MM'),
        fullrange = FALSE,
        level = 0.95,
        colour = 'blue'
      )
  else {
    p.tmp = p.tmp +
      geom_abline(slope = band.arg$a, intercept = band.arg$b) +
      geom_abline(
        slope = band.arg$a,
        intercept =  band.arg$b + abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      ) +
      geom_abline(
        slope = band.arg$a,
        intercept = band.arg$b - abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      )
  }
  
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  
  
  p.tmp = p.tmp +
    theme_bw(base_size = 18, base_family = "Helvetica") +
    theme(
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      axis.line.x = element_line(color = "black", size = 0.25),
      axis.line.y = element_line(color = "black", size = 0.25),
      axis.text.x = element_text(size = 12),
      axis.text.y = element_text(size = 12),
      strip.text.x = element_text(size = 14, face = "bold"),
      strip.text.y = element_text(size = 14, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"),
      legend.position = "none"
    )
  
  # Marginal distributions don;t work with plotly...
  # if (is.null(facet.arg))
  #   ggExtra::ggMarginal(p.scat, type = "histogram",  bins = 100)
  # else
  return(p.tmp)
}
dmattek's avatar
dmattek committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

myGgplotTheme = theme_bw(base_size = 18, base_family = "Helvetica") +
  theme(
    panel.grid.minor = element_blank(),
    panel.grid.major = element_blank(),
    axis.line.x = element_line(color = "black", size = 0.25),
    axis.line.y = element_line(color = "black", size = 0.25),
    axis.text.x = element_text(size = 12, angle = 45, hjust = 1),
    axis.text.y = element_text(size = 12),
    strip.text.x = element_text(size = 14, face = "bold"),
    strip.text.y = element_text(size = 14, face = "bold"),
    strip.background = element_blank(),
    legend.key = element_blank(),
    legend.key.height = unit(1, "lines"),
    legend.key.width = unit(2, "lines"),
    legend.position = "right"
dmattek's avatar
Mod:    
dmattek committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
  )


myPlotHeatmap <- function(data.arg,
                          dend.arg,
                          palette.arg,
                          palette.rev.arg = TRUE,
                          dend.show.arg = TRUE,
                          key.show.arg = TRUE,
                          margin.x.arg = 5,
                          margin.y.arg = 20,
                          nacol.arg = 0.5,
                          colCol.arg = NULL,
                          labCol.arg = NULL,
                          font.row.arg = 1,
                          font.col.arg = 1,
                          title.arg = 'Clustering') {
  
  if (palette.rev.arg)
    my_palette <-
    rev(colorRampPalette(brewer.pal(9, palette.arg))(n = 99))
  else
    my_palette <-
    colorRampPalette(brewer.pal(9, palette.arg))(n = 99)
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
577
578
579
    main = title.arg,
    symbreaks = FALSE,
    symkey = FALSE
dmattek's avatar
Mod:    
dmattek committed
580
581
582
583
  )
  
  return(loc.p)
}