auxfunc.R 36.5 KB
Newer Older
dmattek's avatar
dmattek committed
1
2
3
4
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
dmattek's avatar
dmattek committed
5
# Auxilary functions & definitions of global constants
dmattek's avatar
dmattek committed
6
7
8
#


Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
9
10
11
12
13
library(ggplot2)
library(RColorBrewer)
library(gplots) # for heatmap.2
library(grid) # for modifying grob
library(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15
16

# Global parameters ----
17

dmattek's avatar
dmattek committed
18

19
20
21
# if true, additional output printed to R console
DEB = T

22
# font sizes in pts for plots in the manuscript
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23
24
25
26
27
28
# PLOTFONTBASE = 8
# PLOTFONTAXISTEXT = 8
# PLOTFONTAXISTITLE = 8
# PLOTFONTFACETSTRIP = 10
# PLOTFONTLEGEND = 8

dmattek's avatar
dmattek committed
29
# font sizes in pts for screen display
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
30
31
32
33
34
35
36
37
38
39
40
41
42
PLOTFONTBASE = 16
PLOTFONTAXISTEXT = 16
PLOTFONTAXISTITLE = 16
PLOTFONTFACETSTRIP = 20
PLOTFONTLEGEND = 16

# height (in pixels) of ribbon and single traj. plots
PLOTRIBBONHEIGHT = 500 # in pixels
PLOTTRAJHEIGHT = 500 # in pixels
PLOTPSDHEIGHT = 500 # in pixels
PLOTBOXHEIGHT = 500 # in pixels
PLOTSCATTERHEIGHT = 500 # in pixels
PLOTWIDTH = 85 # in percent
43
44

# default number of facets in plots
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
45
PLOTNFACETDEFAULT = 3
46

dmattek's avatar
dmattek committed
47
# internal column names
dmattek's avatar
dmattek committed
48
COLRT   = 'time'
dmattek's avatar
dmattek committed
49
50
51
52
53
54
55
56
57
58
COLY    = 'y'
COLID   = 'id'
COLIDUNI = 'trackObjectsLabelUni'
COLGR   = 'group'
COLIN   = 'mid.in'
COLOBJN = 'obj.num'
COLPOSX = 'pos.x'
COLPOSY = 'pos.y'
COLIDX = 'IDX'
COLIDXDIFF = 'IDXdiff'
dmattek's avatar
dmattek committed
59
COLCL = 'cl'
dmattek's avatar
dmattek committed
60
61
62
63
64
65

# file names
FCSVOUTLIERS = 'outliers.csv'
FCSVTCCLEAN  = 'tCoursesSelected_clean.csv'
FPDFTCMEAN   = "tCoursesMeans.pdf"
FPDFTCSINGLE = "tCourses.pdf"
66
FPDFTCPSD    = 'tCoursesPsd.pdf'
dmattek's avatar
dmattek committed
67
68
69
70
FPDFBOXAUC   = 'boxplotAUC.pdf'
FPDFBOXTP    = 'boxplotTP.pdf'
FPDFSCATTER  = 'scatter.pdf'

dmattek's avatar
dmattek committed
71
# Colour definitions ----
dmattek's avatar
dmattek committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

97
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
98
l.col.pal = list(
dmattek's avatar
dmattek committed
99
100
101
102
  "Spectral" = 'Spectral',
  "Red-Yellow-Green" = 'RdYlGn',
  "Red-Yellow-Blue" = 'RdYlBu',
  "Greys" = "Greys",
dmattek's avatar
dmattek committed
103
104
105
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
dmattek's avatar
dmattek committed
106
  "Blues" = "Blues"
dmattek's avatar
dmattek committed
107
108
)

109
110
111
112
113
114
115
116
117
118
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
119
120
121
122
123
124
125
126
127
128
129
# list of palettes for the dendrogram
l.col.pal.dend.2 = list(
  "Colorblind 10" = 'Color Blind',
  "Tableau 10" = 'Tableau 10',
  "Tableau 20" = 'Tableau 20',
  "Classic 10" = "Classic 10",
  "Classic 20" = "Classic 20",
  "Traffic 9" = 'Traffic',
  "Seattle Grays 5" = 'Seattle Grays'
)

dmattek's avatar
dmattek committed
130
# Help text ----
dmattek's avatar
dmattek committed
131
helpText.server = c(
dmattek's avatar
dmattek committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
  alDataFormat =  paste0(
    "<p>Switch between long and wide formats of input data. ",
    "TCI accepts CSV or compressed CSV files (gz or bz2).</p>",
    "<p><b>Long format</b> - a row is a single data point and consecutive time series are arranged vertically. ",
    "Data file should contain at least 3 columns separated with a comma:</p>",
    "<li>Identifier of a time series</li>",
    "<li>Time points</li>",
    "<li>A time-varying variable</li>",
    "<br>",
    "<p><b>Wide format</b> - a row is a time series with columns as time points.",
    "At least 3 columns shuold be present:</p>",
    "<li>First two columns in wide format should contain grouping and track IDs</li>",
    "<li>A column with a time point. Headers of columns with time points need to be numeric</li>"
  ),
  inDataGen1 =   paste0(
    "Generate 3 groups with 20 random synthetic time series. ",
    "Every time series contains 101 time points. ",
    "Track IDs are unique across entire dataset."
  ),
  chBtrajRem =   paste0(
    "Load CSV file with a column of track IDs for removal. ",
    "IDs should correspond to those used for plotting."
  ),
  chBstim =      paste0(
    "Load CSV file with stimulation pattern. Should contain 5 columns: ",
    "grouping, start and end time points of stimulation, start and end of y-position, dummy column with ID."
  ),
  chBtrajInter = paste0(
    "Interpolate missing measurements indicated with NAs in the data file. ",
    "In addition, interpolate a row that is completely missing from the data. ",
    "The interval of the time column must be provided to know which rows are missing."
  ),
  chBtrackUni =  paste0(
    "If the track ID in the uploaded dataset is unique only within a group (e.g. an experimental condition), ",
    "make it unique by prepending other columns to the track ID (typically a grouping column)."
  ),
dmattek's avatar
dmattek committed
168
169
170
171
172
173
174
175
176
177
  chBgroup    = "Select columns to group data according to treatment, condition, etc.",
  inSelMath   = "Select math operation to perform on a single or two measurement columns,",
  chBtimeTrim = "Trim time for further processing.",
  chBnorm     = "Divide measurements by the mean/median or calculate z-score with respect to selected time span.",
  rBnormMeth  = "Fold-change or z-score with respect to selected time span.",
  slNormRtMinMax = "Normalise with respect to this time span.",
  chBnormRobust  = "Calculate fold-change and z-score using the median and Median Absolute Deviation, instead of the mean and standard deviation.",
  chBnormGroup   = "Normalise to mean/median of selected time calculated globally, per group, or for individual time series.",
  downloadDataClean = "Download all time series after modifications in this panel.",
  alertNAsPresent            = "NAs present in the measurement column. Consider interpolation.",
dmattek's avatar
dmattek committed
178
  alertWideMissesNumericTime = "Non-numeric headers of time columns. Data in wide format should have numeric column headers corresponding to time points.",
dmattek's avatar
dmattek committed
179
  alertWideTooFewColumns     = "Insufficient columns. Data in wide format should contain at least 3 columns: grouping, track ID, and a single time point."
180
181
)

dmattek's avatar
dmattek committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
dmattek's avatar
dmattek committed
207
208
209
210
211
LOCcalcTrajCI = function(in.dt,
                         in.col.meas,
                         in.col.by = NULL,
                         in.type = c('normal', 'boot'),
                         ...) {
dmattek's avatar
dmattek committed
212
213
214
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
dmattek's avatar
dmattek committed
215
216
217
218
219
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by]
  else
    loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
  
  return(loc.dt)
dmattek's avatar
dmattek committed
220
221
}

222

223
224
225
226
227
228
229
230
231
#' Calculate standard error of the mean
#'
#' @param x Vector
#' @param na.rm Remove NAs; default = FALSE
#'
#' @return A scalar with the result
#' @export
#'
#' @examples
dmattek's avatar
dmattek committed
232
233
LOCstderr = function(x, na.rm = FALSE) {
  if (na.rm)
234
235
    x = na.omit(x)
  
dmattek's avatar
dmattek committed
236
  return(sqrt(var(x) / length(x)))
237
238
}

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#' Calculate the power spectrum density for time-series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.id Name of the column with the unique series identifier
#' @param in.col.by Column names for grouping (default NULL - no grouping). PSD of individual trajectories will be averaged within a group.
#' @param in.method Name of the method for PSD estimation, must be one of c("pgram", "ar"). Default to "pgram*.
#' @param in.return.period Wheter to return densities though periods (1/frequencies) instead of frequencies.
#' @param ... Other paramters to pass to stats::spectrum()
#'
#' @return Datatable with columns: (frequency or period), spec (the density) and grouping column
#' @export
#' @import data.table
#'
#' @examples
LOCcalcPSD <- function(in.dt,
dmattek's avatar
dmattek committed
255
256
257
258
259
260
261
                       in.col.meas,
                       in.col.id,
                       in.col.by,
                       in.method = "pgram",
                       in.return.period = TRUE,
                       in.time.btwPoints = 1,
                       ...) {
262
  require(data.table)
263
  # Method "ar" returns $spec as matrix whereas "pgram" returns a vector, custom function to homogenze output format
dmattek's avatar
dmattek committed
264
265
  mySpectrum <- function(x, ...) {
    args_spec <- list(x = x, plot = FALSE)
266
267
268
269
270
271
    inargs <- list(...)
    args_spec[names(inargs)] <- inargs
    out <- do.call(spectrum, args_spec)
    out$spec <- as.vector(out$spec)
    return(out)
  }
dmattek's avatar
dmattek committed
272
  if (!in.method %in% c("pgram", "ar")) {
273
274
    stop('Method should be one of: c("pgram", "ar"')
  }
dmattek's avatar
dmattek committed
275
276
  dt_spec <-
    in.dt[, (mySpectrum(get(in.col.meas), plot = FALSE, method = in.method)[c("freq", "spec")]), by = in.col.id]
277
278
279
  dt_group <- in.dt[, .SD[1, get(in.col.by)], by = in.col.id]
  setnames(dt_group, "V1", in.col.by)
  dt_spec <- merge(dt_spec, dt_group, by = in.col.id)
dmattek's avatar
dmattek committed
280
281
282
283
  dt_agg <-
    dt_spec[, .(spec = mean(spec)), by = c(in.col.by, "freq")]
  if (in.return.period) {
    dt_agg[, period := 1 / freq]
284
285
286
    dt_agg[, freq := NULL]
    # Adjust period unit to go from frame unit  to time unit
    dt_agg[, period := period * in.time.btwPoints]
287
  } else {
dmattek's avatar
dmattek committed
288
    dt_agg[, freq := freq * (1 / in.time.btwPoints)]
289
    setnames(dt_agg, "freq", "frequency")
290
291
292
293
294
  }
  return(dt_agg)
}


295
#' Generate synthetic CellProfiler output with single-cell time series
dmattek's avatar
dmattek committed
296
297
298
299
300
301
302
303
304
305
306
307
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

dmattek's avatar
dmattek committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
LOCgenTraj <-
  function(in.ntpts = 60,
           in.ntracks = 10,
           in.nfov = 6,
           in.nwells = 1,
           in.addna = NULL,
           in.addout = NULL) {
    x.rand.1 = c(
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.5, 0.1),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3,   1, 0.2),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3,  2, 0.5)
    )
    x.rand.2 = c(
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.25, 0.1),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 0.5, 0.2),
      rnorm(in.ntpts * in.ntracks * in.nfov * 1 / 3, 1, 0.2)
    )
    
    # add NA's for testing
    if (!is.null(in.addna)) {
      locTabLen = length(x.rand.1)
      x.rand.1[round(runif(in.addna) * locTabLen)] = NA
      x.rand.2[round(runif(in.addna) * locTabLen)] = NA
    }
    
    # add outliers for testing
    if (!is.null(in.addout)) {
      locTabLen = length(x.rand.1)
      x.rand.1[round(runif(in.addout) * locTabLen)] = 5
      x.rand.2[round(runif(in.addout) * locTabLen)] = 5
    }
    
    x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
    
    dt.nuc = data.table(
      well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
      group = rep(1:in.nfov, each = in.ntpts * in.ntracks),
      time = x.arg,
      y1 = x.rand.1,
      y2  = x.rand.2,
      posx = runif(
        in.ntpts * in.ntracks * in.nfov,
        min = 0,
        max = 1
      ),
      posy = runif(
        in.ntpts * in.ntracks * in.nfov,
        min = 0,
        max = 1
      ),
      id = rep(1:(in.ntracks * in.nfov), each = in.ntpts)
    )
    
    return(dt.nuc)
dmattek's avatar
dmattek committed
362
  }
dmattek's avatar
dmattek committed
363

dmattek's avatar
dmattek committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
LOCgenTraj2 <-
  function(n_perGroup = 20,
           sd_noise = 0.01,
           sampleFreq = 0.2,
           endTime = 50)
  {
    # Function definition ----------------------------------
    sim_expodecay_lagged_stim <-
      function (n,
                noise,
                interval.stim = 5,
                lambda = 0.2,
                freq = 0.2,
                end = 40)
      {
        require(data.table)
        tvec <- seq(0, end, by = freq)
        stim_time <- seq(interval.stim, end, interval.stim)
        stim_time_matrix <-
          matrix(stim_time, nrow = length(stim_time),
                 ncol = n)
        noise_matrix <- abs(replicate(n, rnorm(
          n = length(stim_time),
          mean = 0,
          sd = noise
        )))
        stim_time_matrix <- stim_time_matrix + noise_matrix
        trajs <- matrix(0, nrow = length(tvec), ncol = n)
        for (col in 1:ncol(stim_time_matrix)) {
          for (row in 1:nrow(stim_time_matrix)) {
            index <- which(tvec >= stim_time_matrix[row, col])[1]
            trajs[index, col] <- 1
          }
397
        }
dmattek's avatar
dmattek committed
398
399
400
401
402
403
        decrease_factor <- exp(-lambda * freq)
        for (col in 1:ncol(trajs)) {
          for (row in 2:nrow(trajs)) {
            if (trajs[row, col] != 1) {
              trajs[row, col] <- trajs[row - 1, col] * decrease_factor
            }
404
405
          }
        }
dmattek's avatar
dmattek committed
406
407
408
409
410
        trajs <- as.data.table(trajs)
        trajs <- cbind(seq(0, end, by = freq), trajs)
        colnames(trajs)[1] <- "Time"
        trajs <- melt(trajs, id.vars = "Time")
        return(trajs)
411
      }
dmattek's avatar
dmattek committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    
    
    # Dataset creation -----------------------------------------------
    dt1 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.4,
        freq = sampleFreq,
        end = endTime
      )
    dt2 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.1,
        freq = sampleFreq,
        end = endTime
      )
    dt3 <-
      sim_expodecay_lagged_stim(
        n = n_perGroup,
        noise = 0.75,
        interval.stim = 10,
        lambda = 0.4,
        freq = sampleFreq,
        end = endTime
      )
    dt3[, value := value / 3]
    
    dt1[, Group := "fastDecay"]
    dt2[, Group := "slowDecay"]
    dt3[, Group := "lowAmplitude"]
    
    dt <- rbindlist(list(dt1, dt2, dt3))
    dt[, ID := sprintf("%s_%02d", Group, as.integer(gsub('[A-Z]', '', variable)))]
    dt[, variable := NULL]
    dt[, Group := as.factor(Group)]
    
    dt[, value := value + runif(1, -0.1, 0.1), by = .(Group, ID)]
    noise_vec <- rnorm(n = nrow(dt), mean = 0, sd = sd_noise)
    dt[, value := value + noise_vec]
    
    setnames(dt, "value", "Meas")
    setcolorder(dt, c("Group", "ID", "Time", "Meas"))
    
    return(dt)
  }
462

dmattek's avatar
dmattek committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
dmattek's avatar
dmattek committed
485
486
487
488
489
490
491
                       in.meas.col,
                       in.rt.col = COLRT,
                       in.rt.min = 10,
                       in.rt.max = 20,
                       in.by.cols = NULL,
                       in.robust = TRUE,
                       in.type = 'z.score') {
dmattek's avatar
dmattek committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


dmattek's avatar
Added:    
dmattek committed
533

534
# Clustering ----
dmattek's avatar
dmattek committed
535
536
537
538
539
540
541
542
543

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:    
dmattek committed
544
545
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
546
  loc.clAssign = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE, )
dmattek's avatar
dmattek committed
547
548
549
550
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
dmattek's avatar
dmattek committed
551
552
553
  loc.dt.clAssign = as.data.table(loc.clAssign, keep.rownames = T)
  setnames(loc.dt.clAssign, c(COLID, COLCL))
  
dmattek's avatar
dmattek committed
554
  
555
556
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
557
  return(loc.dt.clAssign)
dmattek's avatar
Added:    
dmattek committed
558
559
}

dmattek's avatar
dmattek committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
579
580
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
581
582
583
584
585
  return(loc.dt.cl)
}



dmattek's avatar
Added:    
dmattek committed
586
587
588
589
590
591
592
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
dmattek's avatar
dmattek committed
593
594
595
596
597
    data.table(
      cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
      cl.col = loc.col_labels
    )
  ))
dmattek's avatar
Added:    
dmattek committed
598
599
}

dmattek's avatar
dmattek committed
600
# Custom plotting functions ----
dmattek's avatar
dmattek committed
601

dmattek's avatar
dmattek committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
dmattek's avatar
dmattek committed
617
618
619
620
                          in.font.axis.text = 12,
                          in.font.axis.title = 12,
                          in.font.strip = 14,
                          in.font.legend = 12) {
dmattek's avatar
dmattek committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
dmattek's avatar
dmattek committed
636
637
      legend.key.width = unit(2, "lines")
    )
dmattek's avatar
dmattek committed
638
639
640
641
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
642
643
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
644
645
646
647
648
LOCrotatedAxisElementText = function(angle,
                                     position = 'x',
                                     size = 12) {
  angle     = angle[1]
  
dmattek's avatar
dmattek committed
649
  position  = position[1]
dmattek's avatar
dmattek committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
  positions = list(
    x = 0,
    y = 90,
    top = 180,
    right = 270
  )
  if (!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]", paste(names(positions), collapse =
                                                           ", ")), call. = FALSE)
  if (!is.numeric(angle))
    stop("'angle' must be numeric", call. = FALSE)
  rads = (-angle - positions[[position]]) * pi / 180
  hjust = round((1 - sin(rads))) / 2
  vjust = round((1 + cos(rads))) / 2
  element_text(
    size = size,
    angle = angle,
    vjust = vjust,
    hjust = hjust
  )
dmattek's avatar
dmattek committed
670
671
}

672
# Plot individual time series
dmattek's avatar
dmattek committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
LOCplotTraj = function(dt.arg,
                       # input data table
                       x.arg,
                       # string with column name for x-axis
                       y.arg,
                       # string with column name for y-axis
                       group.arg,
                       # string with column name for grouping time series (typicaly cell ID)
                       facet.arg,
                       # string with column name for facetting
                       facet.ncol.arg = 2,
                       # default number of facet columns
                       facet.color.arg = NULL,
                       # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                       line.col.arg = NULL,
                       # string with column name for colouring time series (typically when individual time series are selected in UI)
                       xlab.arg = NULL,
                       # string with x-axis label
                       ylab.arg = NULL,
                       # string with y-axis label
                       plotlab.arg = NULL,
                       # string with plot label
                       dt.stim.arg = NULL,
                       # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
                       x.stim.arg = c('tstart', 'tend'),
                       # column names in stimulation dt with x and xend parameters
                       y.stim.arg = c('ystart', 'yend'),
                       # column names in stimulation dt with y and yend parameters
                       tfreq.arg = 1,
                       # unused
                       xlim.arg = NULL,
                       # limits of x-axis; for visualisation only, not trimmimng data
                       ylim.arg = NULL,
                       # limits of y-axis; for visualisation only, not trimmimng data
                       stim.bar.width.arg = 0.5,
                       # width of the stimulation line; plotted under time series
                       aux.label1 = NULL,
                       # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
                       aux.label2 = NULL,
                       aux.label3 = NULL,
                       stat.arg = c('', 'mean', 'CI', 'SE')) {
dmattek's avatar
Added:    
dmattek committed
714
715
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)
dmattek's avatar
dmattek committed
716
  
dmattek's avatar
Added:    
dmattek committed
717
718
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
719
  p.tmp = ggplot(dt.arg,
dmattek's avatar
dmattek committed
720
721
722
723
724
725
                 aes_string(
                   x = x.arg,
                   y = y.arg,
                   group = group.arg,
                   label = group.arg
                 ))
726
727
728
729
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
730
  
dmattek's avatar
dmattek committed
731
732
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
733
734
      geom_line(alpha = 0.25,
                size = 0.25)
dmattek's avatar
dmattek committed
735
736
  }
  else {
dmattek's avatar
dmattek committed
737
738
739
740
741
742
743
744
745
746
747
748
749
    p.tmp = p.tmp +
      geom_line(aes_string(colour = line.col.arg),
                alpha = 0.5,
                size = 0.5) +
      scale_color_manual(
        name = '',
        values = c(
          "FALSE" = rhg_cols[7],
          "TRUE" = rhg_cols[3],
          "SELECTED" = 'green',
          "NOT SEL" = rhg_cols[7]
        )
      )
dmattek's avatar
dmattek committed
750
  }
dmattek's avatar
dmattek committed
751
  
dmattek's avatar
Mod:    
dmattek committed
752
753
754
755
756
757
758
759
  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:    
dmattek committed
760
761
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:    
dmattek committed
762
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
763
764
765
766
767
768
      geom_hline(
        data = loc.dt.cl,
        colour = facet.color.arg,
        yintercept = loc.y.max,
        size = 4
      ) +
dmattek's avatar
Mod:    
dmattek committed
769
770
771
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
772
  
dmattek's avatar
Added:    
dmattek committed
773
  if ('mean' %in% loc.stat)
dmattek's avatar
dmattek committed
774
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
775
776
    stat_summary(
      aes_string(y = y.arg, group = 1),
dmattek's avatar
dmattek committed
777
      fun.y = mean,
dmattek's avatar
dmattek committed
778
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
779
      colour = 'red',
dmattek's avatar
dmattek committed
780
781
782
783
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:    
dmattek committed
784
    )
dmattek's avatar
dmattek committed
785
  
dmattek's avatar
Added:    
dmattek committed
786
  if ('CI' %in% loc.stat)
dmattek's avatar
dmattek committed
787
    p.tmp = p.tmp +
dmattek's avatar
Added:    
dmattek committed
788
789
790
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
dmattek's avatar
dmattek committed
791
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
792
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
793
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
794
795
796
797
798
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
dmattek's avatar
dmattek committed
799
    p.tmp = p.tmp +
dmattek's avatar
Added:    
dmattek committed
800
801
802
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
dmattek's avatar
dmattek committed
803
      na.rm = T,
dmattek's avatar
Added:    
dmattek committed
804
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
805
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
806
807
808
809
810
811
      geom = "ribbon",
      group = 1
    )
  
  
  
dmattek's avatar
dmattek committed
812
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
813
814
815
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
dmattek's avatar
dmattek committed
816
  
817
818
819
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
820
821
822
823
824
825
826
827
828
829
830
831
832
  if (!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(
      data = dt.stim.arg,
      aes_string(
        x = x.stim.arg[1],
        xend = x.stim.arg[2],
        y = y.stim.arg[1],
        yend = y.stim.arg[2],
        group = 'group'
      ),
      colour = rhg_cols[[3]],
      size = stim.bar.width.arg
    )
dmattek's avatar
dmattek committed
833
834
  }
  
dmattek's avatar
dmattek committed
835
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
dmattek's avatar
dmattek committed
836
  
dmattek's avatar
dmattek committed
837
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
838
839
840
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
dmattek's avatar
dmattek committed
841
842
843
844
845
846
847
    LOCggplotTheme(
      in.font.base = PLOTFONTBASE,
      in.font.axis.text = PLOTFONTAXISTEXT,
      in.font.axis.title = PLOTFONTAXISTITLE,
      in.font.strip = PLOTFONTFACETSTRIP,
      in.font.legend = PLOTFONTLEGEND
    ) +
848
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
849
  
dmattek's avatar
Mod:    
dmattek committed
850
  return(p.tmp)
dmattek's avatar
dmattek committed
851
852
}

853
# Plot average time series with CI together in one facet
dmattek's avatar
dmattek committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
LOCplotTrajRibbon = function(dt.arg,
                             # input data table
                             x.arg,
                             # string with column name for x-axis
                             y.arg,
                             # string with column name for y-axis
                             group.arg = NULL,
                             # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                             col.arg = NULL,
                             # colour pallette for individual time series
                             dt.stim.arg = NULL,
                             # data table with stimulation pattern
                             x.stim.arg = c('tstart', 'tend'),
                             # column names in stimulation dt with x and xend parameters
                             y.stim.arg = c('ystart', 'yend'),
                             # column names in stimulation dt with y and yend parameters
                             stim.bar.width.arg = 0.5,
                             xlim.arg = NULL,
                             # limits of x-axis; for visualisation only, not trimmimng data
                             ylim.arg = NULL,
                             # limits of y-axis; for visualisation only, not trimmimng data
                             ribbon.lohi.arg = c('Lower', 'Upper'),
                             # column names containing lower and upper bound for plotting the ribbon, e.g. for CI; set to NULL to avoid plotting the ribbon
                             ribbon.fill.arg = 'grey50',
                             ribbon.alpha.arg = 0.5,
                             xlab.arg = NULL,
                             ylab.arg = NULL,
                             plotlab.arg = NULL) {
882
883
884
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg))
  
  if (!is.null(ribbon.lohi.arg))
dmattek's avatar
dmattek committed
885
886
887
888
889
890
    p.tmp = p.tmp +
      geom_ribbon(
        aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
        fill = ribbon.fill.arg,
        alpha = ribbon.alpha.arg
      )
891
892
  
  p.tmp = p.tmp + geom_line(aes_string(y = y.arg, colour = group.arg))
893
  
dmattek's avatar
dmattek committed
894
  
895
896
897
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
898
899
900
901
902
903
904
905
906
907
908
909
910
  if (!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(
      data = dt.stim.arg,
      aes_string(
        x = x.stim.arg[1],
        xend = x.stim.arg[2],
        y = y.stim.arg[1],
        yend = y.stim.arg[2]
      ),
      colour = rhg_cols[[3]],
      size = stim.bar.width.arg,
      group = 1
    )
911
  }
dmattek's avatar
dmattek committed
912
  
dmattek's avatar
dmattek committed
913
  p.tmp = p.tmp + coord_cartesian(xlim = xlim.arg, ylim = ylim.arg)
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
931
932
}

933
# Plot average power spectrum density per facet
dmattek's avatar
dmattek committed
934
935
936
937
938
939
940
941
942
943
944
LOCplotPSD <- function(dt.arg,
                       # input data table
                       x.arg,
                       # string with column name for x-axis
                       y.arg,
                       # string with column name for y-axis
                       group.arg = NULL,
                       # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                       xlab.arg = x.arg,
                       ylab.arg = y.arg,
                       facet.color.arg = NULL) {
majpark21's avatar
majpark21 committed
945
  require(ggplot2)
dmattek's avatar
dmattek committed
946
947
948
949
  if (length(setdiff(c(x.arg, y.arg, group.arg), colnames(dt.arg))) > 0) {
    stop(paste("Missing columns in dt.arg: ", setdiff(
      c(x.arg, y.arg, group.arg), colnames(dt.arg)
    )))
majpark21's avatar
majpark21 committed
950
  }
dmattek's avatar
dmattek committed
951
  p.tmp <- ggplot(dt.arg, aes_string(x = x.arg, y = y.arg)) +
majpark21's avatar
majpark21 committed
952
    geom_line() +
dmattek's avatar
dmattek committed
953
954
955
    geom_rug(sides = "b",
             alpha = 1,
             color = "lightblue") +
majpark21's avatar
majpark21 committed
956
957
    facet_wrap(group.arg) +
    labs(x = xlab.arg, y = ylab.arg)
958
  
959
960
961
962
963
964
965
  if (!is.null(facet.color.arg)) {
    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', group.arg)
    
    # adjust facet.color.arg to plot
    
966
    p.tmp = p.tmp +
dmattek's avatar
dmattek committed
967
968
969
970
971
972
      geom_hline(
        data = loc.dt.cl,
        colour = facet.color.arg,
        yintercept = loc.y.max,
        size = 4
      ) +
973
974
      scale_colour_manual(values = facet.color.arg,
                          name = '')
975
976
  }
  
majpark21's avatar
majpark21 committed
977
978
  return(p.tmp)
}
979

dmattek's avatar
dmattek committed
980
981
982
#' Plot a scatter plot with an optional linear regression
#'
#' @param dt.arg input of data.table with 2 columns with x and y coordinates
dmattek's avatar
dmattek committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' @param facet.arg
#' @param facet.ncol.arg
#' @param xlab.arg
#' @param ylab.arg
#' @param plotlab.arg
#' @param alpha.arg
#' @param trend.arg
#' @param ci.arg

LOCggplotScat = function(dt.arg,
                         facet.arg = NULL,
                         facet.ncol.arg = 2,
                         xlab.arg = NULL,
                         ylab.arg = NULL,
                         plotlab.arg = NULL,
                         alpha.arg = 1,
                         trend.arg = T,
                         ci.arg = 0.95) {
dmattek's avatar
dmattek committed
1001
  p.tmp = ggplot(dt.arg, aes(x = x, y = y, label = id)) +
dmattek's avatar
dmattek committed
1002
    geom_point(alpha = alpha.arg)
dmattek's avatar
dmattek committed
1003
  
dmattek's avatar
dmattek committed
1004
  if (trend.arg) {
dmattek's avatar
dmattek committed
1005
1006
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
1007
        method = "lm",
dmattek's avatar
dmattek committed
1008
        fullrange = FALSE,
dmattek's avatar
dmattek committed
1009
        level = ci.arg,
dmattek's avatar
dmattek committed
1010
1011
1012
        colour = 'blue'
      )
  }
dmattek's avatar
dmattek committed
1013
  
dmattek's avatar
dmattek committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  p.tmp = p.tmp +
dmattek's avatar
dmattek committed
1034
1035
1036
1037
1038
1039
1040
    LOCggplotTheme(
      in.font.base = PLOTFONTBASE,
      in.font.axis.text = PLOTFONTAXISTEXT,
      in.font.axis.title = PLOTFONTAXISTITLE,
      in.font.strip = PLOTFONTFACETSTRIP,
      in.font.legend = PLOTFONTLEGEND
    ) +
1041
    theme(legend.position = "none")
dmattek's avatar
dmattek committed
1042
  
dmattek's avatar
dmattek committed
1043
1044
  return(p.tmp)
}
dmattek's avatar
dmattek committed
1045

1046

dmattek's avatar
dmattek committed
1047
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
dmattek committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                           dend.arg,
                           palette.arg,
                           palette.rev.arg = TRUE,
                           dend.show.arg = TRUE,
                           key.show.arg = TRUE,
                           margin.x.arg = 5,
                           margin.y.arg = 20,
                           nacol.arg = 0.5,
                           colCol.arg = NULL,
                           labCol.arg = NULL,
                           font.row.arg = 1,
                           font.col.arg = 1,
                           breaks.arg = NULL,
                           title.arg = 'Clustering') {
1062
1063
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:    
dmattek committed
1064
1065
  if (palette.rev.arg)
    my_palette <-
dmattek's avatar
dmattek committed
1066
      rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:    
dmattek committed
1067
1068
  else
    my_palette <-
dmattek's avatar
dmattek committed
1069
      colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:    
dmattek committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
1105
1106
    main = title.arg,
    symbreaks = FALSE,
1107
    symkey = FALSE,
dmattek's avatar
dmattek committed
1108
1109
1110
1111
    breaks = if (is.null(breaks.arg))
      NULL
    else
      seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks + 1)
dmattek's avatar
Mod:    
dmattek committed
1112
1113
1114
1115
  )
  
  return(loc.p)
}