In order to mitigate against the brute force attacks against Gitlab accounts, we are moving to all edu-ID Logins. We would like to remind you to link your account with your edu-id. Login will be possible only by edu-ID after November 30, 2021. Here you can find the instructions for linking your account.

If you don't have a SWITCH edu-ID, you can create one with this guide here

kind regards

This Server has been upgraded to GitLab release 14.2.6

tabClHierSpar.R 16.2 KB
Newer Older
dmattek's avatar
Added:    
dmattek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

# UI
clustHierSparUI <- function(id, label = "Sparse Hierarchical CLustering") {
  ns <- NS(id)
  
  tagList(
    br(),
    fluidRow(
      column(
        4,
        selectInput(
          ns("selectPlotHierSparLinkage"),
          label = ("Select linkage method:"),
          choices = list(
            "Average" = 1,
            "Complete" = 2,
            "Single" = 3,
            "Centroid" = 4
          ),
          selected = 1
        ),
        selectInput(
          ns("selectPlotHierSparDiss"),
          label = ("Select type of dissimilarity measure:"),
          choices = list("Squared Distance" = 1,
                         "Absolute Value" = 2),
          selected = 1
        )
      ),
      
      column(
        4,
        sliderInput(
          ns('inPlotHierSparNclust'),
          '#dendrogram branches to colour',
          min = 1,
          max = 20,
          value = 1,
          step = 1,
          ticks = TRUE,
          round = TRUE
        ),
        checkboxInput(ns('chBPlotHierSparClSel'), 'Manually select clusters to display'),
        uiOutput(ns('uiPlotHierSparClSel')),
        downloadButton(ns('downCellClSpar'), 'Download CSV with cell IDs and cluster no.')
      ),
      
      column(
        4,
        checkboxInput(ns('inHierSparAdv'),
                      'Advanced options',
                      FALSE),
        uiOutput(ns('uiPlotHierSparNperms')),
        uiOutput(ns('uiPlotHierSparNiter'))
      )
    ),
    
    
    br(),

    tabsetPanel(
      tabPanel('Heat-map',
               fluidRow(
                 column(3,
                        checkboxInput(ns('selectPlotHierSparDend'), 'Plot dendrogram and re-order samples', TRUE),
                        selectInput(
                          ns("selectPlotHierSparPalette"),
                          label = "Select colour palette:",
                          choices = l.col.pal,
                          selected = 'Spectral'
                        ),
                        checkboxInput(ns('inPlotHierSparRevPalette'), 'Reverse colour palette', TRUE),
                        checkboxInput(ns('selectPlotHierSparKey'), 'Plot colour key', TRUE)
                 ),
                 column(3,
                        sliderInput(
                          ns('inPlotHierSparNAcolor'),
                          'Shade of grey for NA values (0 - black, 1 - white)',
                          min = 0,
                          max = 1,
                          value = 0.8,
                          step = .1,
                          ticks = TRUE
                        ),
                        numericInput(ns('inPlotHierSparHeatMapHeight'), 
                                     'Display plot height [px]', 
                                     value = 600, 
                                     min = 100,
                                     step = 100)
                 ),
                 column(6,
                        br(),
                        h4(
                          "Sparse hierarchical clustering using ",
                          a("sparcl", href = "https://cran.r-project.org/web/packages/sparcl/")
                        ),
                        p(
                          'Column labels in the heat-map are additionally labeld according to their \"importance\":'
                        ),
                        tags$ol(
                          tags$li("Black - not taken into account"),
                          tags$li("Blue with \"*\" - low importance (weight factor in (0, 0.1]"),
                          tags$li("Green with \"**\" - medium importance (weight factor in (0.1, 0.5]"),
                          tags$li("Red with \"***\" - high importance (weight factor in (0.5, 1.0]")
                        )
                 )
               ),
               
               fluidRow(
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparMarginX'),
                     'Margin below x-axis',
                     5,
                     min = 1,
                     width = 100
                   )
                 ),
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparMarginY'),
                     'Margin right of y-axis',
                     20,
                     min = 1,
                     width = 100
                   )
                 ),
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparFontX'),
                     'Font size row labels',
                     1,
                     min = 0,
                     width = 100,
                     step = 0.1
                   )
                 ),
                 column(
                   3,
                   numericInput(
                     ns('inPlotHierSparFontY'),
                     'Font size column labels',
                     1,
                     min = 0,
                     width = 100,
                     step = 0.1
                   )
                 )
               ),
               br(),
               
               
               downPlotUI(ns('downPlotHierSparHM'), "Download PDF"),
               
               actionButton(ns('butPlotHierSparHeatMap'), 'Plot!'),
               plotOutput(ns('outPlotHierSpar'))
      ),

162
163
164
      tabPanel('Averages',
               modTrajRibbonPlotUI(ns('modPlotHierSparTrajRibbon'))),
      
dmattek's avatar
Added:    
dmattek committed
165
166
      tabPanel('Time-courses',
               modTrajPlotUI(ns('modPlotHierSparTraj'))),
167
      
dmattek's avatar
Added:    
dmattek committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
      tabPanel('Cluster dist.',
               modClDistPlotUI(ns('hierClSparDistPlot')))
    )
  )
}

# SERVER
clustHierSpar <- function(input, output, session, in.data4clust, in.data4trajPlot) {

  # UI for advanced options
  output$uiPlotHierSparNperms = renderUI({
    ns <- session$ns
    if (input$inHierSparAdv)
      sliderInput(
        ns('inPlotHierSparNperms'),
        'Number of permutations',
        min = 1,
        max = 20,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  # UI for advanced options
  output$uiPlotHierSparNiter = renderUI({
    ns <- session$ns

    if (input$inHierSparAdv)
      sliderInput(
        ns('inPlotHierSparNiter'),
        'Number of iterations',
        min = 1,
        max = 50,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  
  output$uiPlotHierSparClSel = renderUI({
    ns <- session$ns

    if(input$chBPlotHierSparClSel) {
      selectInput('inPlotHierSparClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierSparNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })

  
  userFitHierSpar <- reactive({
    cat(file = stderr(), 'userFitHierSpar \n')

    dm.t = in.data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
229
230
    #cat('rownames: ', rownames(dm.t), '\n')
    #cat('=============\ndimensions:', dim(dm.t), '\n')
dmattek's avatar
Added:    
dmattek committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    
    perm.out <- HierarchicalSparseCluster.permute(
      dm.t,
      wbounds = NULL,
      nperms = ifelse(input$inHierSparAdv, input$inPlotHierSparNperms, 1),
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    
    sparsehc <- HierarchicalSparseCluster(
      dists = perm.out$dists,
      wbound = perm.out$bestw,
      niter = ifelse(input$inHierSparAdv, input$inPlotHierSparNiter, 1),
      method = s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)],
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
dmattek's avatar
dmattek committed
246
    
247
248
    #cat('=============\nsparsehc:\n')
    #print(sparsehc$hc)
dmattek's avatar
dmattek committed
249
    
dmattek's avatar
Added:    
dmattek committed
250
251
252
253
    return(sparsehc)
  })
  
  
dmattek's avatar
dmattek committed
254
255
  
  # return dendrogram colour coded according to the cut level of the dendrogram
dmattek's avatar
Added:    
dmattek committed
256
257
258
259
260
261
262
  userFitDendHierSpar <- reactive({
    sparsehc = userFitHierSpar()
    if (is.null(sparsehc)) {
      return()
    }
    
    dend <- as.dendrogram(sparsehc$hc)
dmattek's avatar
dmattek committed
263
    
264
    #cat('=============\ncutree:\n', dendextend::cutree(dend, input$inPlotHierSparNclust, order_clusters_as_data = TRUE), '\n')
dmattek's avatar
dmattek committed
265
    
dmattek's avatar
Added:    
dmattek committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    dend <- color_branches(dend, 
                           col = rainbow_hcl,
                           k = input$inPlotHierSparNclust)
    
    return(dend)
  })
  
  # returns table prepared with f-n getClCol
  # for sparse hierarchical clustering
  getClColHierSpar <- reactive({
    cat(file = stderr(), 'getClColHierSpar \n')
    
    loc.dend = userFitDendHierSpar()
    if (is.null(loc.dend))
      return(NULL)
    
dmattek's avatar
dmattek committed
282
283
284
285
    loc.cut = getClCol(loc.dend, input$inPlotHierSparNclust)

    
    return(loc.cut)
dmattek's avatar
Added:    
dmattek committed
286
287
288
289
290
291
292
  })
  

  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni_afterTrim <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni_afterTrim\n')
dmattek's avatar
dmattek committed
293
    loc.dt = in.data4clust()
dmattek's avatar
Added:    
dmattek committed
294
295
296
297
    
    if (is.null(loc.dt))
      return(NULL)
    else
dmattek's avatar
dmattek committed
298
      return(rownames(loc.dt))
dmattek's avatar
Added:    
dmattek committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  })
  
  # return dt with cell IDs and their corresponding condition name
  # The condition is the column defined by facet groupings
  getDataCond <- reactive({
    cat(file = stderr(), 'getDataCond\n')
    loc.dt = in.data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[, .(id, group)]))
    
  })
  
  # prepare data for plotting trajectories per cluster
  # outputs dt as data4trajPlot but with an additional column 'cl' that holds cluster numbers
  # additionally some clusters are omitted according to manual selection
  data4trajPlotClSpar <- reactive({
    cat(file = stderr(), 'data4trajPlotClSpar: in\n')
    
    loc.dt = in.data4trajPlot()
    
    if (is.null(loc.dt)) {
      cat(file = stderr(), 'data4trajPlotClSpar: dt is NULL\n')
      return(NULL)
    }
    
    cat(file = stderr(), 'data4trajPlotClSpar: dt not NULL\n')
    
329
    #cat('rownames: ', rownames(in.data4clust()), '\n')
dmattek's avatar
dmattek committed
330

dmattek's avatar
Added:    
dmattek committed
331
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
dmattek committed
332
333
334
335
336
337
338
339
    loc.dt.cl = getDataClSpar(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim())

    ####
    ## PROBLEM!!!
    ## the dendrogram from sparse hier clust doesn't contain cellID's
    ## the following merge won't work...
    ## No idea how to solve it
  
dmattek's avatar
Added:    
dmattek committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
    
    return(loc.dt)    
  })
  
  
  # download a list of cellIDs with cluster assignments
  output$downCellClSpar <- downloadHandler(
    filename = function() {
      paste0('clust_hierchSpar_data_',
             s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
             '_',
             s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.csv')
    },
    
    content = function(file) {
dmattek's avatar
dmattek committed
360
      write.csv(x = getDataClSpar(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
dmattek's avatar
Added:    
dmattek committed
361
362
363
364
365
366
367
368
    }
  )
  
  # prepare data for barplot with distribution of items per condition  
  data4clSparDistPlot <- reactive({
    cat(file = stderr(), 'data4clSparDistPlot: in\n')
    
    # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
dmattek committed
369
    loc.dend <- userFitDendHierSpar()
dmattek's avatar
Added:    
dmattek committed
370
371
372
373
374
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClSparDist: loc.dend is NULL\n')
      return(NULL)
    }
    
dmattek's avatar
dmattek committed
375
376
    # get cell id's with associated cluster numbers
    loc.dt.cl = getDataClSpar(loc.dend, input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
Added:    
dmattek committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    
    # get cellIDs with condition name
    loc.dt.gr = getDataCond()
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotClSparDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
    return(loc.dt.aggr)
    
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHierSpar <- function() {
    
    loc.dm = in.data4clust()
    if (is.null(loc.dm)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    loc.dend <- userFitDendHierSpar()
    
    loc.colnames = paste0(ifelse(sparsehc$ws == 0, "",
                                 ifelse(
                                   sparsehc$ws <= 0.1,
                                   "* ",
                                   ifelse(sparsehc$ws <= 0.5, "** ", "*** ")
                                 )),  colnames(loc.dm))
    
    loc.colcol   = ifelse(sparsehc$ws == 0,
                          "black",
                          ifelse(
                            sparsehc$ws <= 0.1,
                            "blue",
                            ifelse(sparsehc$ws <= 0.5, "green", "red")
                          ))
    
    loc.p = myPlotHeatmap(loc.dm,
                          loc.dend, 
                          palette.arg = input$selectPlotHierSparPalette, 
                          palette.rev.arg = input$inPlotHierSparRevPalette, 
                          dend.show.arg = input$selectPlotHierSparDend, 
                          key.show.arg = input$selectPlotHierSparKey, 
                          margin.x.arg = input$inPlotHierSparMarginX, 
                          margin.y.arg = input$inPlotHierSparMarginY, 
                          nacol.arg = input$inPlotHierSparNAcolor, 
                          colCol.arg = loc.colcol,
                          labCol.arg = loc.colnames,
                          font.row.arg = input$inPlotHierSparFontX, 
                          font.col.arg = input$inPlotHierSparFontY, 
                          title.arg = paste(
                            "Distance measure: ",
                            s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                            "\nLinkage method: ",
                            s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)]
                          ))
    
    return(loc.p)
  }
  
  getPlotHierSparHeatMapHeight <- function() {
    return (input$inPlotHierSparHeatMapHeight)
  }
  
  
  callModule(modTrajPlot, 'modPlotHierSparTraj', 
             in.data = data4trajPlotClSpar, 
             in.facet = 'cl', 
             in.facet.color = getClColHierSpar,
             paste0('clust_hierchSparse_tCourses_',
                    s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                    '_',
                    s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
  
dmattek's avatar
dmattek committed
462
463
464
465
466
467
468
469
  callModule(modTrajRibbonPlot, 'modPlotHierSparTrajRibbon', 
             in.data = data4trajPlotClSpar, 
             in.facet = 'cl',  
             in.facet.color = getClColHierSpar,
             in.fname = paste0('clust_hierchSparse_tCoursesMeans_',
                               s.cl.diss[as.numeric(input$selectPlotHierSparDiss)],
                               '_',
                               s.cl.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
dmattek's avatar
Added:    
dmattek committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
  
  
  callModule(modClDistPlot, 'hierClSparDistPlot', 
             in.data = data4clSparDistPlot,
             in.cols = getClColHierSpar,
             in.fname = paste0('clust_hierchSparse_clDist_',
                               s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                               '_',
                               s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
  
  
  
  # Sparse Hierarchical - display heatmap
  output$outPlotHierSpar <- renderPlot({
    locBut = input$butPlotHierSparHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSpar: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSpar()
  }, height = getPlotHierSparHeatMapHeight)
  
  # Sparse Hierarchical - Heat Map - download pdf
  callModule(downPlot, "downPlotHierSparHM",       paste0('clust_hierchSparse_heatMap_',
                                                          s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                          '_',
                                                          s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.png'), plotHierSpar)
  
  
}