server.R 29.3 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2
3
4
5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6
7
8
9
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
dmattek's avatar
dmattek committed
10
11
library(shinyBS) # for tooltips
library(shinycssloaders) # for loader animations
dmattek's avatar
dmattek committed
12
13
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
15
16
17
library(plotly) # interactive plot
library(DT) # interactive tables

dmattek's avatar
dmattek committed
18
library(dendextend) # for color_branches
19
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
20
21
library(RColorBrewer)
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
22
library(ggthemes) # nice colour palettes
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23
24

library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
Added:    
dmattek committed
25
26
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
27
28
29
30
library(robust) # for robust linear regression
library(MASS)
library(pracma) # for trapz

dmattek's avatar
dmattek committed
31

32
# Global parameters ----
dmattek's avatar
dmattek committed
33
# change to increase the limit of the upload file size
dmattek's avatar
Added:    
dmattek committed
34
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
35

dmattek's avatar
dmattek committed
36
37
38
# colour of loader spinner (shinycssloaders)
options(spinner.color="#00A8AA")

dmattek's avatar
dmattek committed
39
# Server logic ----
dmattek's avatar
dmattek committed
40
shinyServer(function(input, output, session) {
41
  useShinyjs()
dmattek's avatar
dmattek committed
42
  
43
  # This is only set at session start
dmattek's avatar
dmattek committed
44
  # We use this as a way to determine which input was
45
46
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
47
48
49
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
50
51
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
52
  )
dmattek's avatar
dmattek committed
53
54
55
56
57
58
59
60
61

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
62
  
dmattek's avatar
dmattek committed
63
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
64
  
dmattek's avatar
dmattek committed
65
  # Generate random dataset
66
  dataGen1 <- eventReactive(input$inDataGen1, {
67
    if (DEB)
68
      cat("server:dataGen1\n")
69
    
dmattek's avatar
dmattek committed
70
    return(LOCgenTraj(in.nwells = 3, in.addout = 3))
71
72
  })
  
dmattek's avatar
dmattek committed
73
  # Load main data file
74
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
75
    if (DEB)
76
      cat("server:dataLoadNuc\n")
77

78
79
80
81
82
83
84
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
85
      return(fread(locFilePath, strip.white = T))
86
87
88
    }
  })
  
dmattek's avatar
dmattek committed
89
90
91
92
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
93

dmattek's avatar
dmattek committed
94
  # Load data with trajectories to remove
95
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
96
    if (DEB)
97
      cat(file = stdout(), "server:dataLoadTrajRem\n")
98
    
99
100
101
102
103
104
105
106
107
108
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
109
  
dmattek's avatar
dmattek committed
110
  # Load data with stimulation pattern
111
  dataLoadStim <- eventReactive(input$inButLoadStim, {
112
    if (DEB)
113
      cat(file = stdout(), "server:dataLoadStim\n")
114
    
115
116
117
118
119
120
121
122
123
124
125
126
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:    
dmattek committed
127
128
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
129
    if (DEB)
130
      cat(file = stdout(), 'server:uiFileLoadTrajRem\n')
dmattek's avatar
Added:    
dmattek committed
131
132
133
134
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
135
        'Select file and press "Load Data"',
dmattek's avatar
Added:    
dmattek committed
136
137
138
139
140
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
141
    if (DEB)
142
      cat(file = stdout(), 'server:uiButLoadTrajRem\n')
dmattek's avatar
Added:    
dmattek committed
143
144
145
146
147
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

148
149
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
150
    if (DEB)
151
      cat(file = stdout(), 'server:uiFileLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
152
    
153
154
155
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
156
        'Select file and press "Load Data"',
157
158
159
160
161
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
162
    if (DEB)
163
      cat(file = stdout(), 'server:uiButLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
164
    
165
166
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:    
dmattek committed
167
168
  })
  
169

dmattek's avatar
dmattek committed
170
  
dmattek's avatar
dmattek committed
171
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
172
  output$varSelTrackLabel = renderUI({
173
    if (DEB)
174
      cat(file = stdout(), 'server:varSelTrackLabel\n')
175
    
dmattek's avatar
dmattek committed
176
    locCols = getDataNucCols()
177
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
178
179
180
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
181
      'Track ID column:',
dmattek's avatar
dmattek committed
182
183
184
185
186
187
188
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
189
    if (DEB)
190
      cat(file = stdout(), 'server:varSelTime\n')
191
    
dmattek's avatar
dmattek committed
192
    locCols = getDataNucCols()
193
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
194
195
196
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
197
      'Time column:',
dmattek's avatar
dmattek committed
198
199
200
201
202
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
203
204

  output$varSelTimeFreq = renderUI({
205
    if (DEB)
206
      cat(file = stdout(), 'server:varSelTimeFreq\n')
207
    
208
209
210
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
dmattek's avatar
dmattek committed
211
        'Interval between two time points:',
212
213
214
215
216
217
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
218
  })
dmattek's avatar
dmattek committed
219
  
dmattek's avatar
dmattek committed
220
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
221
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
222
223
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
224
  output$varSelGroup = renderUI({
225
    if (DEB)
226
      cat(file = stdout(), 'server:varSelGroup\n')
dmattek's avatar
dmattek committed
227
    
dmattek's avatar
dmattek committed
228
229
230
231
232
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
233
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
234
235

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
236
237
        selectInput(
          'inSelGroup',
dmattek's avatar
dmattek committed
238
          'Select:',
dmattek's avatar
dmattek committed
239
240
241
242
243
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
244
245
246
247
      }
    }
  })
  
248
249
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
250
  output$varSelSite = renderUI({
251
    if (DEB)
252
      cat(file = stdout(), 'server:varSelSite\n')
dmattek's avatar
dmattek committed
253
    
254
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
255
      locCols = getDataNucCols()
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
256
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov|(G|g)roup', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
257
258
259
      
      selectInput(
        'inSelSite',
dmattek's avatar
dmattek committed
260
        'Columns to add to track ID:',
dmattek's avatar
Added:    
dmattek committed
261
262
        locCols,
        width = '100%',
263
264
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:    
dmattek committed
265
266
      )
    }
dmattek's avatar
dmattek committed
267
268
269
270
  })
  
  
  output$varSelMeas1 = renderUI({
271
    if (DEB)
272
      cat(file = stdout(), 'server:varSelMeas1\n')
dmattek's avatar
dmattek committed
273
274
275
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
276
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
277

dmattek's avatar
dmattek committed
278
279
      selectInput(
        'inSelMeas1',
dmattek's avatar
dmattek committed
280
        'Column with 1st measurement:',
dmattek's avatar
dmattek committed
281
282
283
284
285
286
287
288
289
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
290
    if (DEB)
291
      cat(file = stdout(), 'server:varSelMeas2\n')
292
    
dmattek's avatar
dmattek committed
293
294
295
296
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
297
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
298

dmattek's avatar
dmattek committed
299
300
      selectInput(
        'inSelMeas2',
dmattek's avatar
dmattek committed
301
        'Column with 2nd measurement',
dmattek's avatar
dmattek committed
302
303
304
305
306
307
308
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
309
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
310
  output$uiSlTimeTrim = renderUI({
311
    if (DEB)
312
      cat(file = stdout(), 'server:uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
334
  
dmattek's avatar
dmattek committed
335
  # UI-side-panel-normalization ----
336
337
338
339
  
  # select normalisation method
  # - fold-change calculates fold change with respect to the mean
  # - z-score calculates z-score of the selected regione of the time series
dmattek's avatar
dmattek committed
340
  output$uiChBnorm = renderUI({
341
    if (DEB)
342
      cat(file = stdout(), 'server:uiChBnorm\n')
dmattek's avatar
dmattek committed
343
344
    
    if (input$chBnorm) {
345
      tagList(
dmattek's avatar
dmattek committed
346
347
348
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
349
350
351
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score'),
        width = "40%"
      ),
dmattek's avatar
dmattek committed
352
      bsTooltip('rBnormMeth', helpText.server[12], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
353
354
355
356
      )
    }
  })
  
357
  # select the region of the time series for normalisation
dmattek's avatar
dmattek committed
358
  output$uiSlNorm = renderUI({
359
    if (DEB)
360
      cat(file = stdout(), 'server:uiSlNorm\n')
dmattek's avatar
dmattek committed
361
362
363
364
365
366
367
368
369
370
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
371
      tagList(
dmattek's avatar
dmattek committed
372
373
      sliderInput(
        'slNormRtMinMax',
374
        label = 'Time span',
dmattek's avatar
dmattek committed
375
376
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
377
378
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
379
      ),
dmattek's avatar
dmattek committed
380
      bsTooltip('slNormRtMinMax', helpText.server[13], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
381
382
383
384
      )
    }
  })
  
385
  # use robust stats (median instead of mean, mad instead of sd)
dmattek's avatar
dmattek committed
386
  output$uiChBnormRobust = renderUI({
387
    if (DEB)
388
      cat(file = stdout(), 'server:uiChBnormRobust\n')
dmattek's avatar
dmattek committed
389
390
    
    if (input$chBnorm) {
391
      tagList(
dmattek's avatar
dmattek committed
392
393
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
394
395
                    FALSE, 
                    width = "40%"),
dmattek's avatar
dmattek committed
396
      bsTooltip('chBnormRobust', helpText.server[14], placement = "top", trigger = "hover", options = NULL)
397
      )
dmattek's avatar
dmattek committed
398
399
400
    }
  })
  
401
  # choose whether normalisation should be calculated for the entire dataset, group, or trajectory
dmattek's avatar
dmattek committed
402
  output$uiChBnormGroup = renderUI({
403
    if (DEB)
404
      cat(file = stdout(), 'server:uiChBnormGroup\n')
dmattek's avatar
dmattek committed
405
406
    
    if (input$chBnorm) {
407
      tagList(
dmattek's avatar
dmattek committed
408
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
409
                   label = 'Normalisation grouping',
410
411
                   choices = list('Entire dataset' = 'none', 'Per group' = 'group', 'Per trajectory' = 'id'), 
                   width = "40%"),
dmattek's avatar
dmattek committed
412
      bsTooltip('chBnormGroup', helpText.server[15], placement = "top", trigger = "hover", options = NULL)
413
      )
dmattek's avatar
dmattek committed
414
415
416
417
    }
  })
  
  
418
419
420
421
422
423
  # Pop-overs ----
  addPopover(session, 
             "alDataFormat",
             title = "Data format",
             content = helpText.server[["alDataFormat"]],
             trigger = "click", )
dmattek's avatar
dmattek committed
424
  
dmattek's avatar
dmattek committed
425

dmattek's avatar
dmattek committed
426
  # Processing-data ----
dmattek's avatar
dmattek committed
427
  
428
429
430
431
432
433
434
435
436
437
438
439
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
440
    # Don't wrap around if(DEB) !!!
441
    cat(
442
      "server:dataInBoth\n   inGen1: ",
443
      locInGen1,
444
      "      prev=",
445
      isolate(counter$dataGen1),
446
      "\n   inDataNuc: ",
447
448
449
450
451
452
453
454
455
456
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
457
    # isolate the checks of the counter reactiveValues
458
459
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
460
      cat("server:dataInBoth if inDataGen1\n")
461
462
463
464
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
465
      cat("server:dataInBoth if inDataLoadNuc\n")
466
      dm = dataLoadNuc()
467
468
469
      
      # convert to long format if radio box set to "wide"
      # the input data in long format should contain:
470
      # - the first row with a header: group, track id, time points as columns with numeric header
471
472
      # - consecutive rows with time series, where columns are time points
      if (input$inRbutLongWide == 1) {
473
474
475
476
477
478
479
480
481
482
483
484
        print(length(names(dm)))
        
        # data in wide format requires at least 3 columns: grouping, track id, 1 time point
        if (length(names(dm)) < 3) {
          dm = NULL
          
          createAlert(session, "alertAnchorSidePanelDataFormat", "alertWideTooFewColumns", 
                      title = "Error",
                      content = helpText.server[["alertWideTooFewColumns"]], 
                      append = FALSE,
                      style = "danger")
          
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        } else {
          closeAlert(session, "alertWideTooFewColumns")

          # obtain column headers from the wide format data
          # headers for grouping and track id columns
          loc.cols.idvars = names(dm)[1:2]
          
          # headers for time columns
          loc.cols.time = names(dm)[c(-1, -2)]
          
          # check if time columns are numeric
          # from https://stackoverflow.com/a/21154566/1898713
          loc.cols.time.numres = grepl("[-]?[0-9]+[.]?[0-9]*|[-]?[0-9]+[L]?|[-]?[0-9]+[.]?[0-9]*[eE][0-9]+", loc.cols.time)
          
          # melt the table only if time columns are numeric
          if (sum(!loc.cols.time.numres) == 0) {
            closeAlert(session, "alertWideMissesNumericTime")
            
            # long to wide
            dm = melt(dm, id.vars = loc.cols.idvars, variable.name = COLRT, value.name = COLY)
            
            # convert column names with time points to a number
            dm[, (COLRT) := as.numeric(levels(get(COLRT)))[get(COLRT)]]
            
          } else {
            dm = NULL

            createAlert(session, "alertAnchorSidePanelDataFormat", "alertWideMissesNumericTime", title = "Error",
                        content = helpText.server[["alertWideMissesNumericTime"]], 
                        append = FALSE,
                        style = "danger")
          }
        }
519
520
      }
      
521
522
523
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
524
      cat("server:dataInBoth else\n")
525
526
      dm = NULL
    }
527
    
528
529
530
531
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
532
  getDataNucCols <- reactive({
533
    if (DEB)
534
      cat(file = stdout(), 'server:getDataNucCols: in\n')
535
    
536
537
538
539
540
541
542
543
544
545
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
546
    if (DEB)
547
      cat(file = stdout(), 'server:dataMod\n')
548
    
549
550
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
551
    if (is.null(loc.dt))
552
553
      return(NULL)
    
554
    if (input$chBtrackUni) {
555
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
556
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:    
dmattek committed
557
    } else {
558
      # stay with track ID provided in the loaded dataset; has to be unique
559
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
560
561
    }
    
dmattek's avatar
dmattek committed
562
    
dmattek's avatar
Added:    
dmattek committed
563
564
    # remove trajectories based on uploaded csv
    if (input$chBtrajRem) {
565
      if (DEB)
566
        cat(file = stdout(), 'server:dataMod: trajRem not NULL\n')
dmattek's avatar
Added:    
dmattek committed
567
568
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
569
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
570
571
    }
    
dmattek's avatar
dmattek committed
572
573
574
    # check if NAs present
    
    
575
576
577
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
578
579
580
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
581
    if (DEB)
582
      cat(file = stdout(), 'server:getDataTrackObjLabUni\n')
583
    
dmattek's avatar
dmattek committed
584
    loc.dt = dataMod()
585
    
dmattek's avatar
dmattek committed
586
587
588
589
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
590
591
  })
  
dmattek's avatar
Mod:    
dmattek committed
592
  
dmattek's avatar
dmattek committed
593
594
595
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
596
  getDataTpts <- reactive({
597
    if (DEB)
598
      cat(file = stdout(), 'server:getDataTpts\n')
599
    
dmattek's avatar
dmattek committed
600
    loc.dt = dataMod()
601
    
dmattek's avatar
dmattek committed
602
603
604
605
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
606
607
  })
  
dmattek's avatar
dmattek committed
608
  
609
610
611
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
612
  #    realtime - selected from input
dmattek's avatar
dmattek committed
613
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
614
  #               (can be a single column or result of an operation on two cols)
615
616
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
617
618
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
619
620
621
622
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
623
  data4trajPlot <- reactive({
624
    if (DEB)
625
      cat(file = stdout(), 'server:data4trajPlot\n')
626
627
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
628
    if (is.null(loc.dt))
629
630
      return(NULL)
    
631
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
632
    if (input$inSelMath == '')
633
634
635
636
637
638
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
639
    # create expression for 'group' column
640
641
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
642
643
644
645
646
647
648
649
650
651
652
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
653
    
dmattek's avatar
dmattek committed
654
655

    # column name with time
656
657
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
658
659
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
660
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
661
    
dmattek's avatar
Added:    
dmattek committed
662
663
    
    # Find column names with position
664
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
665
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
666
    
667
    if (DEB)
668
      cat('server:data4trajPlot:\n   Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
669
670
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
671
672
673
674
      locPos = TRUE
    else
      locPos = FALSE
    
675
676
677
678
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
679
680
681
682
683
684
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
685
      loc.s.objnum = loc.s.objnum[1]
686
      locObjNum = TRUE
dmattek's avatar
dmattek committed
687
    }
688
689
    
    
690
691
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
dmattek's avatar
dmattek committed
692
    if (sum(names(loc.dt) %in% COLIN) > 0)
693
694
695
696
697
698
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
dmattek's avatar
dmattek committed
699
700
701
702
    s.colexpr = paste0('.(',  COLY, ' = ', loc.s.y,
                       ', ', COLID, ' = ', COLIDUNI, 
                       ', ', COLGR, ' = ', loc.s.gr,
                       ', ', COLRT, ' = ', loc.s.rt)
703
704
    
    # account for the presence of 'mid.in' column in uploaded data
dmattek's avatar
dmattek committed
705
    # future: choose this column in UI
706
707
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
708
                         ',', COLIN, ' = ', COLIN)
709
710
711
712
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
713
714
                         ', ', COLPOSX, '= ', loc.s.pos.x,
                         ', ', COLPOSY, '= ', loc.s.pos.y)
715
716
717
718
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
719
                         ', ', COLOBJN, ' = ', loc.s.objnum)
720
721
722
723
724
725
726
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
727
728
729
730
731
    # Convert track ID to a factor.
    # This is necessary for, e.g. merging data with cluster assignments.
    # If input dataset has track ID as a number, such a merge would fail.
    loc.out[, (COLID) := as.factor(get(COLID))]
    
732
733
734
735
736
737
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
dmattek's avatar
dmattek committed
738
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', get(COLIN))]
739
      else
dmattek's avatar
Mod:    
dmattek committed
740
        # add a column with status of track selection
dmattek's avatar
dmattek committed
741
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
742
    }
743
      
dmattek's avatar
dmattek committed
744

745
    ## Interpolate missing data and NA data points
746
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
747
    # Tracks are interpolated only within first and last time points of every track id
748
749
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
750
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
751
    
dmattek's avatar
dmattek committed
752
753
754
755
756
757
758
759
760
    # check if NA's present
    if (sum(is.na(loc.out[[COLY]])))
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresent", title = "Warning",
                  content = helpText.server[["alertNAsPresent"]], 
                  append = FALSE,
                  style = "warning")
    else
      closeAlert(session, "alertNAsPresent")
    
761
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
762

763
764
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
dmattek's avatar
dmattek committed
765
      loc.out = loc.out[setkeyv(loc.out[, .(seq(min(get(COLRT), na.rm = T), max(get(COLRT), na.rm = T), input$inSelTimeFreq)), by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
766
767
      
      # x-check: print all rows with NA's
768
      if (DEB) {
769
        cat(file = stdout(), 'server:data4trajPlot: Rows with NAs:\n')
770
771
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
772
773
774
775
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
776
        s.cols = c(COLY, COLPOSX, COLPOSY)
777
      else
dmattek's avatar
dmattek committed
778
        s.cols = c(COLY)
779
      
780
781
782
783
784
785
786
787
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

dmattek's avatar
dmattek committed
788
        loc.out[, (col) := na_interpolation(get(col)), by = c(COLID)]        
789
790
791
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
792
793
794
795
796
797
798
799
800
801
802
803
804
805
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:    
dmattek committed
806
    
807
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
808
    if(input$chBtimeTrim) {
dmattek's avatar
dmattek committed
809
      loc.out = loc.out[get(COLRT) >= input$slTimeTrim[[1]] & get(COLRT) <= input$slTimeTrim[[2]] ]
dmattek's avatar
dmattek committed
810
    }
dmattek's avatar
dmattek committed
811
    
812
    ## Normalization
dmattek's avatar
dmattek committed
813
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
814
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
815
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
816
        in.dt = loc.out,
dmattek's avatar
dmattek committed
817
818
        in.meas.col = COLY,
        in.rt.col = COLRT,
dmattek's avatar
dmattek committed
819
820
821
822
823
824
825
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
826
827
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
828
829
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
830
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
831
832
833
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
834
835
  })
  
dmattek's avatar
dmattek committed
836
837
  
  # prepare data for clustering
dmattek's avatar
dmattek committed
838
  # convert from long to wide; return a matrix with:
dmattek's avatar
dmattek committed
839
840
841
  # cells as columns
  # time points as rows
  data4clust <- reactive({
842
    if (DEB)  
843
      cat(file = stdout(), 'server:data4clust\n')
dmattek's avatar
dmattek committed
844
    
dmattek's avatar
dmattek committed
845
    loc.dt = data4trajPlotNoOut()
dmattek's avatar
dmattek committed
846
847
848
    if (is.null(loc.dt))
      return(NULL)
    
849
850
851
852
    # convert from long to wide format
    loc.dt.wide = dcast(loc.dt, 
                    reformulate(response = COLID, termlabels = COLRT), 
                    value.var = COLY)
dmattek's avatar
dmattek committed
853
    
854
855
    # store row names for later
    loc.rownames = loc.dt.wide[[COLID]]
dmattek's avatar
Mod:    
dmattek committed
856
    
857
858
    # omit first column that contains row names
    loc.m.out = as.matrix(loc.dt.wide[, -1])
dmattek's avatar
Added:    
dmattek committed
859
    
860
861
    # assign row names to the matrix
    rownames(loc.m.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
862
    
863
    return(loc.m.out)
dmattek's avatar
Mod:    
dmattek committed
864
  }) 
dmattek's avatar
dmattek committed
865
  
dmattek's avatar
dmattek committed
866
  
867
868
869
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
870
    if (DEB)  
871
      cat(file = stdout(), 'server:data4stimPlot\n')
872
873
    
    if (input$chBstim) {
874
      if (DEB)  
875
        cat(file = stdout(), 'server:data4stimPlot: stim not NULL\n')
876
877
878
879
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
880
      if (DEB)  
881
        cat(file = stdout(), 'server:data4stimPlot: stim is NULL\n')
882
      
883
884
885
886
      return(NULL)
    }
  })
  
dmattek's avatar
dmattek committed
887
888
889
890
891
892
893
894
895
896
  # prepare y-axis label in time series plots, depending on UI setting
  
  createYaxisLabel = reactive({
    locLabel = input$inSelMeas1
    
    
    
    return(locLabel)
  })
  
dmattek's avatar
Added:    
dmattek committed
897
898
899
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
dmattek's avatar
dmattek committed
900
    filename = FCSVTCCLEAN,
dmattek's avatar
Added:    
dmattek committed
901
    content = function(file) {
dmattek's avatar
dmattek committed
902
      write.csv(data4trajPlotNoOut(), file, row.names = FALSE)
dmattek's avatar
Added:    
dmattek committed
903
904
905
    }
  )
  
dmattek's avatar
dmattek committed
906
907
908
  # Plotting-trajectories ----

  # UI for selecting trajectories
909
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
910
  output$varSelHighlight = renderUI({
911
    if (DEB)  
912
      cat(file = stdout(), 'server:varSelHighlight\n')