server.R 27.4 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2
3
4
5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6
7
8
9
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
dmattek's avatar
dmattek committed
10
11
library(shinyBS) # for tooltips
library(shinycssloaders) # for loader animations
dmattek's avatar
dmattek committed
12
13
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
15
16
17
library(plotly) # interactive plot
library(DT) # interactive tables

dmattek's avatar
dmattek committed
18
library(dendextend) # for color_branches
19
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
20
21
library(RColorBrewer)
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
22
library(ggthemes) # nice colour palettes
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23
24

library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
Added:    
dmattek committed
25
26
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
27
28
29
30
library(robust) # for robust linear regression
library(MASS)
library(pracma) # for trapz

dmattek's avatar
dmattek committed
31

32
# Global parameters ----
dmattek's avatar
dmattek committed
33
# change to increase the limit of the upload file size
dmattek's avatar
Added:    
dmattek committed
34
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
35

dmattek's avatar
dmattek committed
36
37
38
# colour of loader spinner (shinycssloaders)
options(spinner.color="#00A8AA")

dmattek's avatar
dmattek committed
39
# Server logic ----
dmattek's avatar
dmattek committed
40
shinyServer(function(input, output, session) {
41
  useShinyjs()
dmattek's avatar
dmattek committed
42
  
43
  # This is only set at session start
dmattek's avatar
dmattek committed
44
  # We use this as a way to determine which input was
45
46
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
47
48
49
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
50
51
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
52
  )
dmattek's avatar
dmattek committed
53
54
55
56
57
58
59
60
61

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
62
  
dmattek's avatar
dmattek committed
63
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
64
  
dmattek's avatar
dmattek committed
65
  # Generate random dataset
66
  dataGen1 <- eventReactive(input$inDataGen1, {
67
    if (DEB)
68
      cat("server:dataGen1\n")
69
    
dmattek's avatar
dmattek committed
70
    return(LOCgenTraj(in.nwells = 3, in.addout = 3))
71
72
  })
  
dmattek's avatar
dmattek committed
73
  # Load main data file
74
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
75
    if (DEB)
76
      cat("server:dataLoadNuc\n")
77

78
79
80
81
82
83
84
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
85
      return(fread(locFilePath, strip.white = T))
86
87
88
    }
  })
  
dmattek's avatar
dmattek committed
89
90
91
92
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
93

dmattek's avatar
dmattek committed
94
  # Load data with trajectories to remove
95
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
96
    if (DEB)
97
      cat(file = stdout(), "server:dataLoadTrajRem\n")
98
    
99
100
101
102
103
104
105
106
107
108
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
109
  
dmattek's avatar
dmattek committed
110
  # Load data with stimulation pattern
111
  dataLoadStim <- eventReactive(input$inButLoadStim, {
112
    if (DEB)
113
      cat(file = stdout(), "server:dataLoadStim\n")
114
    
115
116
117
118
119
120
121
122
123
124
125
126
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:    
dmattek committed
127
128
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
129
    if (DEB)
130
      cat(file = stdout(), 'server:uiFileLoadTrajRem\n')
dmattek's avatar
Added:    
dmattek committed
131
132
133
134
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
135
        'Select file and press "Load Data"',
dmattek's avatar
Added:    
dmattek committed
136
137
138
139
140
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
141
    if (DEB)
142
      cat(file = stdout(), 'server:uiButLoadTrajRem\n')
dmattek's avatar
Added:    
dmattek committed
143
144
145
146
147
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

148
149
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
150
    if (DEB)
151
      cat(file = stdout(), 'server:uiFileLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
152
    
153
154
155
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
156
        'Select file and press "Load Data"',
157
158
159
160
161
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
162
    if (DEB)
163
      cat(file = stdout(), 'server:uiButLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
164
    
165
166
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:    
dmattek committed
167
168
  })
  
169

dmattek's avatar
dmattek committed
170
  
dmattek's avatar
dmattek committed
171
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
172
  output$varSelTrackLabel = renderUI({
173
    if (DEB)
174
      cat(file = stdout(), 'server:varSelTrackLabel\n')
175
    
dmattek's avatar
dmattek committed
176
    locCols = getDataNucCols()
177
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
178
179
180
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
181
      'Track ID column:',
dmattek's avatar
dmattek committed
182
183
184
185
186
187
188
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
189
    if (DEB)
190
      cat(file = stdout(), 'server:varSelTime\n')
191
    
dmattek's avatar
dmattek committed
192
    locCols = getDataNucCols()
193
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
194
195
196
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
197
      'Time column:',
dmattek's avatar
dmattek committed
198
199
200
201
202
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
203
204

  output$varSelTimeFreq = renderUI({
205
    if (DEB)
206
      cat(file = stdout(), 'server:varSelTimeFreq\n')
207
    
208
209
210
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
dmattek's avatar
dmattek committed
211
        'Interval between two time points:',
212
213
214
215
216
217
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
218
  })
dmattek's avatar
dmattek committed
219
  
dmattek's avatar
dmattek committed
220
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
221
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
222
223
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
224
  output$varSelGroup = renderUI({
225
    if (DEB)
226
      cat(file = stdout(), 'server:varSelGroup\n')
dmattek's avatar
dmattek committed
227
    
dmattek's avatar
dmattek committed
228
229
230
231
232
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
233
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
234
235

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
236
237
        selectInput(
          'inSelGroup',
dmattek's avatar
dmattek committed
238
          'Select:',
dmattek's avatar
dmattek committed
239
240
241
242
243
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
244
245
246
247
      }
    }
  })
  
248
249
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
250
  output$varSelSite = renderUI({
251
    if (DEB)
252
      cat(file = stdout(), 'server:varSelSite\n')
dmattek's avatar
dmattek committed
253
    
254
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
255
      locCols = getDataNucCols()
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
256
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov|(G|g)roup', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
257
258
259
      
      selectInput(
        'inSelSite',
dmattek's avatar
dmattek committed
260
        'Columns to add to track ID:',
dmattek's avatar
Added:    
dmattek committed
261
262
        locCols,
        width = '100%',
263
264
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:    
dmattek committed
265
266
      )
    }
dmattek's avatar
dmattek committed
267
268
269
270
  })
  
  
  output$varSelMeas1 = renderUI({
271
    if (DEB)
272
      cat(file = stdout(), 'server:varSelMeas1\n')
dmattek's avatar
dmattek committed
273
274
275
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
276
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
277

dmattek's avatar
dmattek committed
278
279
      selectInput(
        'inSelMeas1',
dmattek's avatar
dmattek committed
280
        'Column with 1st measurement:',
dmattek's avatar
dmattek committed
281
282
283
284
285
286
287
288
289
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
290
    if (DEB)
291
      cat(file = stdout(), 'server:varSelMeas2\n')
292
    
dmattek's avatar
dmattek committed
293
294
295
296
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
297
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
298

dmattek's avatar
dmattek committed
299
300
      selectInput(
        'inSelMeas2',
dmattek's avatar
dmattek committed
301
        'Column with 2nd measurement',
dmattek's avatar
dmattek committed
302
303
304
305
306
307
308
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
309
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
310
  output$uiSlTimeTrim = renderUI({
311
    if (DEB)
312
      cat(file = stdout(), 'server:uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
334
  
dmattek's avatar
dmattek committed
335
  # UI-side-panel-normalization ----
336
337
338
339
  
  # select normalisation method
  # - fold-change calculates fold change with respect to the mean
  # - z-score calculates z-score of the selected regione of the time series
dmattek's avatar
dmattek committed
340
  output$uiChBnorm = renderUI({
341
    if (DEB)
342
      cat(file = stdout(), 'server:uiChBnorm\n')
dmattek's avatar
dmattek committed
343
344
    
    if (input$chBnorm) {
345
      tagList(
dmattek's avatar
dmattek committed
346
347
348
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
349
350
351
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score'),
        width = "40%"
      ),
dmattek's avatar
dmattek committed
352
      bsTooltip('rBnormMeth', helpText.server[12], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
353
354
355
356
      )
    }
  })
  
357
  # select the region of the time series for normalisation
dmattek's avatar
dmattek committed
358
  output$uiSlNorm = renderUI({
359
    if (DEB)
360
      cat(file = stdout(), 'server:uiSlNorm\n')
dmattek's avatar
dmattek committed
361
362
363
364
365
366
367
368
369
370
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
371
      tagList(
dmattek's avatar
dmattek committed
372
373
      sliderInput(
        'slNormRtMinMax',
374
        label = 'Time span',
dmattek's avatar
dmattek committed
375
376
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
377
378
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
379
      ),
dmattek's avatar
dmattek committed
380
      bsTooltip('slNormRtMinMax', helpText.server[13], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
381
382
383
384
      )
    }
  })
  
385
  # use robust stats (median instead of mean, mad instead of sd)
dmattek's avatar
dmattek committed
386
  output$uiChBnormRobust = renderUI({
387
    if (DEB)
388
      cat(file = stdout(), 'server:uiChBnormRobust\n')
dmattek's avatar
dmattek committed
389
390
    
    if (input$chBnorm) {
391
      tagList(
dmattek's avatar
dmattek committed
392
393
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
394
395
                    FALSE, 
                    width = "40%"),
dmattek's avatar
dmattek committed
396
      bsTooltip('chBnormRobust', helpText.server[14], placement = "top", trigger = "hover", options = NULL)
397
      )
dmattek's avatar
dmattek committed
398
399
400
    }
  })
  
401
  # choose whether normalisation should be calculated for the entire dataset, group, or trajectory
dmattek's avatar
dmattek committed
402
  output$uiChBnormGroup = renderUI({
403
    if (DEB)
404
      cat(file = stdout(), 'server:uiChBnormGroup\n')
dmattek's avatar
dmattek committed
405
406
    
    if (input$chBnorm) {
407
      tagList(
dmattek's avatar
dmattek committed
408
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
409
                   label = 'Normalisation grouping',
410
411
                   choices = list('Entire dataset' = 'none', 'Per group' = 'group', 'Per trajectory' = 'id'), 
                   width = "40%"),
dmattek's avatar
dmattek committed
412
      bsTooltip('chBnormGroup', helpText.server[15], placement = "top", trigger = "hover", options = NULL)
413
      )
dmattek's avatar
dmattek committed
414
415
416
417
    }
  })
  
  
dmattek's avatar
dmattek committed
418
  
dmattek's avatar
dmattek committed
419

dmattek's avatar
dmattek committed
420
  # Processing-data ----
dmattek's avatar
dmattek committed
421
  
422
423
424
425
426
427
428
429
430
431
432
433
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
434
    # Don't wrap around if(DEB) !!!
435
    cat(
436
      "server:dataInBoth\n   inGen1: ",
437
      locInGen1,
438
      "      prev=",
439
      isolate(counter$dataGen1),
440
      "\n   inDataNuc: ",
441
442
443
444
445
446
447
448
449
450
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
451
    # isolate the checks of the counter reactiveValues
452
453
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
454
      cat("server:dataInBoth if inDataGen1\n")
455
456
457
458
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
459
      cat("server:dataInBoth if inDataLoadNuc\n")
460
      dm = dataLoadNuc()
461
462
463
464
465
466
467
468
469
470
471
472
473
      
      # convert to long format if radio box set to "wide"
      # the input data in long format should contain:
      # - the first row with a header: ID, 1, 2, 3...
      # - consecutive rows with time series, where columns are time points
      if (input$inRbutLongWide == 1) {
        # long to wide
        dm = melt(dm, id.vars = names(dm)[1], variable.name = COLRT, value.name = COLY)

        # convert column names with time points to a number
        dm[, (COLRT) := as.numeric(levels(get(COLRT)))[get(COLRT)]]
      }
      
474
475
476
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
477
      cat("server:dataInBoth else\n")
478
479
480
481
482
483
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
484
  getDataNucCols <- reactive({
485
    if (DEB)
486
      cat(file = stdout(), 'server:getDataNucCols: in\n')
487
    
488
489
490
491
492
493
494
495
496
497
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
498
    if (DEB)
499
      cat(file = stdout(), 'server:dataMod\n')
500
    
501
502
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
503
    if (is.null(loc.dt))
504
505
      return(NULL)
    
506
    if (input$chBtrackUni) {
507
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
508
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:    
dmattek committed
509
    } else {
510
      # stay with track ID provided in the loaded dataset; has to be unique
511
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
512
513
    }
    
dmattek's avatar
dmattek committed
514
    
dmattek's avatar
Added:    
dmattek committed
515
516
    # remove trajectories based on uploaded csv
    if (input$chBtrajRem) {
517
      if (DEB)
518
        cat(file = stdout(), 'server:dataMod: trajRem not NULL\n')
dmattek's avatar
Added:    
dmattek committed
519
520
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
521
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
522
523
    }
    
dmattek's avatar
dmattek committed
524
525
526
    # check if NAs present
    
    
527
528
529
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
530
531
532
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
533
    if (DEB)
534
      cat(file = stdout(), 'server:getDataTrackObjLabUni\n')
535
    
dmattek's avatar
dmattek committed
536
    loc.dt = dataMod()
537
    
dmattek's avatar
dmattek committed
538
539
540
541
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
542
543
  })
  
dmattek's avatar
Mod:    
dmattek committed
544
  
dmattek's avatar
dmattek committed
545
546
547
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
548
  getDataTpts <- reactive({
549
    if (DEB)
550
      cat(file = stdout(), 'server:getDataTpts\n')
551
    
dmattek's avatar
dmattek committed
552
    loc.dt = dataMod()
553
    
dmattek's avatar
dmattek committed
554
555
556
557
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
558
559
  })
  
dmattek's avatar
dmattek committed
560
  
561
562
563
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
564
  #    realtime - selected from input
dmattek's avatar
dmattek committed
565
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
566
  #               (can be a single column or result of an operation on two cols)
567
568
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
569
570
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
571
572
573
574
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
575
  data4trajPlot <- reactive({
576
    if (DEB)
577
      cat(file = stdout(), 'server:data4trajPlot\n')
578
579
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
580
    if (is.null(loc.dt))
581
582
      return(NULL)
    
583
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
584
    if (input$inSelMath == '')
585
586
587
588
589
590
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
591
    # create expression for 'group' column
592
593
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
594
595
596
597
598
599
600
601
602
603
604
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
605
    
dmattek's avatar
dmattek committed
606
607

    # column name with time
608
609
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
610
611
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
612
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
613
    
dmattek's avatar
Added:    
dmattek committed
614
615
    
    # Find column names with position
616
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
617
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
618
    
619
    if (DEB)
620
      cat('server:data4trajPlot:\n   Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
621
622
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
623
624
625
626
      locPos = TRUE
    else
      locPos = FALSE
    
627
628
629
630
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
631
632
633
634
635
636
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
637
      loc.s.objnum = loc.s.objnum[1]
638
      locObjNum = TRUE
dmattek's avatar
dmattek committed
639
    }
640
641
    
    
642
643
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
dmattek's avatar
dmattek committed
644
    if (sum(names(loc.dt) %in% COLIN) > 0)
645
646
647
648
649
650
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
dmattek's avatar
dmattek committed
651
652
653
654
    s.colexpr = paste0('.(',  COLY, ' = ', loc.s.y,
                       ', ', COLID, ' = ', COLIDUNI, 
                       ', ', COLGR, ' = ', loc.s.gr,
                       ', ', COLRT, ' = ', loc.s.rt)
655
656
    
    # account for the presence of 'mid.in' column in uploaded data
dmattek's avatar
dmattek committed
657
    # future: choose this column in UI
658
659
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
660
                         ',', COLIN, ' = ', COLIN)
661
662
663
664
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
665
666
                         ', ', COLPOSX, '= ', loc.s.pos.x,
                         ', ', COLPOSY, '= ', loc.s.pos.y)
667
668
669
670
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
671
                         ', ', COLOBJN, ' = ', loc.s.objnum)
672
673
674
675
676
677
678
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
679
680
681
682
683
    # Convert track ID to a factor.
    # This is necessary for, e.g. merging data with cluster assignments.
    # If input dataset has track ID as a number, such a merge would fail.
    loc.out[, (COLID) := as.factor(get(COLID))]
    
684
685
686
687
688
689
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
dmattek's avatar
dmattek committed
690
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', get(COLIN))]
691
      else
dmattek's avatar
Mod:    
dmattek committed
692
        # add a column with status of track selection
dmattek's avatar
dmattek committed
693
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
694
    }
695
      
dmattek's avatar
dmattek committed
696

697
    ## Interpolate missing data and NA data points
698
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
699
    # Tracks are interpolated only within first and last time points of every track id
700
701
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
702
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
703
    
dmattek's avatar
dmattek committed
704
705
706
707
708
709
710
711
712
    # check if NA's present
    if (sum(is.na(loc.out[[COLY]])))
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresent", title = "Warning",
                  content = helpText.server[["alertNAsPresent"]], 
                  append = FALSE,
                  style = "warning")
    else
      closeAlert(session, "alertNAsPresent")
    
713
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
714

715
716
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
dmattek's avatar
dmattek committed
717
      loc.out = loc.out[setkeyv(loc.out[, .(seq(min(get(COLRT), na.rm = T), max(get(COLRT), na.rm = T), input$inSelTimeFreq)), by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
718
719
      
      # x-check: print all rows with NA's
720
      if (DEB) {
721
        cat(file = stdout(), 'server:data4trajPlot: Rows with NAs:\n')
722
723
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
724
725
726
727
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
728
        s.cols = c(COLY, COLPOSX, COLPOSY)
729
      else
dmattek's avatar
dmattek committed
730
        s.cols = c(COLY)
731
      
732
733
734
735
736
737
738
739
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

dmattek's avatar
dmattek committed
740
        loc.out[, (col) := na_interpolation(get(col)), by = c(COLID)]        
741
742
743
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
744
745
746
747
748
749
750
751
752
753
754
755
756
757
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:    
dmattek committed
758
    
759
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
760
    if(input$chBtimeTrim) {
dmattek's avatar
dmattek committed
761
      loc.out = loc.out[get(COLRT) >= input$slTimeTrim[[1]] & get(COLRT) <= input$slTimeTrim[[2]] ]
dmattek's avatar
dmattek committed
762
    }
dmattek's avatar
dmattek committed
763
    
764
    ## Normalization
dmattek's avatar
dmattek committed
765
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
766
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
767
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
768
        in.dt = loc.out,
dmattek's avatar
dmattek committed
769
770
        in.meas.col = COLY,
        in.rt.col = COLRT,
dmattek's avatar
dmattek committed
771
772
773
774
775
776
777
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
778
779
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
780
781
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
782
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
783
784
785
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
786
787
  })
  
dmattek's avatar
dmattek committed
788
789
  
  # prepare data for clustering
dmattek's avatar
dmattek committed
790
  # convert from long to wide; return a matrix with:
dmattek's avatar
dmattek committed
791
792
793
  # cells as columns
  # time points as rows
  data4clust <- reactive({
794
    if (DEB)  
795
      cat(file = stdout(), 'server:data4clust\n')
dmattek's avatar
dmattek committed
796
    
dmattek's avatar
dmattek committed
797
    loc.dt = data4trajPlotNoOut()
dmattek's avatar
dmattek committed
798
799
800
    if (is.null(loc.dt))
      return(NULL)
    
801
802
803
804
    # convert from long to wide format
    loc.dt.wide = dcast(loc.dt, 
                    reformulate(response = COLID, termlabels = COLRT), 
                    value.var = COLY)
dmattek's avatar
dmattek committed
805
    
806
807
    # store row names for later
    loc.rownames = loc.dt.wide[[COLID]]
dmattek's avatar
Mod:    
dmattek committed
808
    
809
810
    # omit first column that contains row names
    loc.m.out = as.matrix(loc.dt.wide[, -1])
dmattek's avatar
Added:    
dmattek committed
811
    
812
813
    # assign row names to the matrix
    rownames(loc.m.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
814
    
815
    return(loc.m.out)
dmattek's avatar
Mod:    
dmattek committed
816
  }) 
dmattek's avatar
dmattek committed
817
  
dmattek's avatar
dmattek committed
818
  
819
820
821
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
822
    if (DEB)  
823
      cat(file = stdout(), 'server:data4stimPlot\n')
824
825
    
    if (input$chBstim) {
826
      if (DEB)  
827
        cat(file = stdout(), 'server:data4stimPlot: stim not NULL\n')
828
829
830
831
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
832
      if (DEB)  
833
        cat(file = stdout(), 'server:data4stimPlot: stim is NULL\n')
834
      
835
836
837
838
      return(NULL)
    }
  })
  
dmattek's avatar
dmattek committed
839
840
841
842
843
844
845
846
847
848
  # prepare y-axis label in time series plots, depending on UI setting
  
  createYaxisLabel = reactive({
    locLabel = input$inSelMeas1
    
    
    
    return(locLabel)
  })
  
dmattek's avatar
Added:    
dmattek committed
849
850
851
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
dmattek's avatar
dmattek committed
852
    filename = FCSVTCCLEAN,
dmattek's avatar
Added:    
dmattek committed
853
    content = function(file) {
dmattek's avatar
dmattek committed
854
      write.csv(data4trajPlotNoOut(), file, row.names = FALSE)
dmattek's avatar
Added:    
dmattek committed
855
856
857
    }
  )
  
dmattek's avatar
dmattek committed
858
859
860
  # Plotting-trajectories ----

  # UI for selecting trajectories
861
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
862
  output$varSelHighlight = renderUI({
863
    if (DEB)  
864
      cat(file = stdout(), 'server:varSelHighlight\n')
dmattek's avatar
dmattek committed
865
    
dmattek's avatar
dmattek committed
866
867
868
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
869
    
dmattek's avatar
dmattek committed
870
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
871
    if (!is.null(loc.v)) {
872
      selectInput(
dmattek's avatar
dmattek committed
873
        'inSelHighlight',
874
        'Select one or more trajectories:',
dmattek's avatar
dmattek committed
875
        loc.v,
876
        width = '100%',
dmattek's avatar
dmattek committed
877
        multiple = TRUE
878
      )
dmattek's avatar
dmattek committed
879
880
881
    }
  })
  
dmattek's avatar
dmattek committed
882
883
884
  # Taking out outliers 
  data4trajPlotNoOut = callModule(modSelOutliers, 'returnOutlierIDs', data4trajPlot)
  
dmattek's avatar
dmattek committed
885
886
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
dmattek's avatar
dmattek committed
887
             in.data = data4trajPlotNoOut,
dmattek's avatar
dmattek committed