server.R 42.8 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4 5 6 7 8 9 10 11 12 13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16 17 18 19 20
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
21

22
# increase file upload limit
dmattek's avatar
dmattek committed
23
options(shiny.maxRequestSize = 80 * 1024 ^ 2)
dmattek's avatar
dmattek committed
24

25
shinyServer(function(input, output, session) {
26
  useShinyjs()
dmattek's avatar
dmattek committed
27
  
28 29 30 31 32 33 34 35
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
    dataLoadNuc  = isolate(input$inButLoadNuc)
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
36 37
  )
  
dmattek's avatar
dmattek committed
38 39 40
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
41
  # FILE LOAD
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
69 70 71 72 73 74 75
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
dmattek committed
76 77
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'rack'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTrackLabel',
      'Select Track Label (e.g. objNuc_Track_ObjectsLabel):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'RealTime'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
      'Select time column (e.g. RealTime):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
      locColSel = locCols[locCols %like% 'ite']
      if (length(locColSel) == 0)
        locColSel = locCols[locCols %like% 'eries'][1] # index 1 at the end in case more matches; select 1st
      else if (length(locColSel) > 1) {
        locColSel = locColSel[1]
      }
      #    cat('UI varSelGroup::locColSel ', locColSel, '\n')
      selectInput(
        'inSelGroup',
        'Select one or more facet groupings (e.g. Site, Well, Channel):',
        locCols,
        width = '100%',
        selected = locColSel,
        multiple = TRUE
      )
    }
    
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
dmattek's avatar
dmattek committed
139 140 141 142 143 144 145 146 147 148 149 150 151
    if (!input$chBtrackUni) {
      locCols = getDataNucCols()
      locColSel = locCols[locCols %like% 'ite'][1] # index 1 at the end in case more matches; select 1st
      
      cat(locColSel, '\n')
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
152 153 154 155 156 157 158 159 160 161
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
dmattek's avatar
dmattek committed
162 163
      locColSel = locCols[locCols %like% 'objCyto_Intensity_MeanIntensity_imErkCor.*' |
                            locCols %like% 'Ratio'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      #    cat(locColSel, '\n')
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
      locColSel = locCols[locCols %like% 'objNuc_Intensity_MeanIntensity_imErkCor.*'][1] # index 1 at the end in case more matches; select 1st
      #    cat(locColSel, '\n')
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
218
  
dmattek's avatar
dmattek committed
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
250 251
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
                  label = 'Normalisation grouping',
                  choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
    }
  })
  
  
dmattek's avatar
dmattek committed
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  # UI for removing outliers
  
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {

      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
        value = 99, 
        step = 0.1
      )
dmattek's avatar
dmattek committed
292 293
      

dmattek's avatar
dmattek committed
294 295 296
    }
  })
  
dmattek's avatar
dmattek committed
297 298 299 300 301 302 303 304 305
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
306
  
dmattek's avatar
dmattek committed
307 308 309 310 311 312 313 314 315
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
365
  getDataNucCols <- reactive({
366 367 368 369 370 371 372 373 374 375 376
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
377
    cat(file = stderr(), 'dataMod\n')
378 379
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
380
    if (is.null(loc.dt))
381 382
      return(NULL)
    
dmattek's avatar
dmattek committed
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    if (!input$chBtrackUni) {
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
dmattek committed
403
    } else {
dmattek's avatar
dmattek committed
404
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
dmattek committed
405 406
    }
    
dmattek's avatar
dmattek committed
407
    
408 409 410
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
411 412 413 414 415
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
416
    
dmattek's avatar
dmattek committed
417 418 419 420
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
421 422
  })
  
dmattek's avatar
dmattek committed
423
  # return all unique track object labels (created in dataMod)
dmattek's avatar
dmattek committed
424
  # This will be used to display in UI for trajectory highlighting
dmattek's avatar
dmattek committed
425 426 427 428 429 430 431 432 433 434 435 436 437
  getDataTrackObjLabUni_afterTrim <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni_afterTrim\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$id))
  })

  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
438 439 440
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
441
    
dmattek's avatar
dmattek committed
442 443 444 445
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
446 447
  })
  
dmattek's avatar
dmattek committed
448 449 450 451 452 453 454 455 456 457 458 459 460
  # return dt with cell IDs and their corresponding condition name
  # The condition is the column defined by facet groupings
  getDataCond <- reactive({
    cat(file = stderr(), 'getDataCond\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[, .(id, group)]))
    
  })
  
461 462 463
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
464
  #    realtime - selected from input
dmattek's avatar
dmattek committed
465
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
466 467 468 469 470
  #               (can be a single column or result of an operation on two cols)
  #    id       - trackObjectsLabelUni (created in dataMod)
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
  #               highlight status from UI
471
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
472
    cat(file = stderr(), 'data4trajPlot\n')
473 474
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
475
    if (is.null(loc.dt))
476 477 478
      return(NULL)
    
    
dmattek's avatar
dmattek committed
479
    if (input$inSelMath == '')
480 481 482 483 484 485 486 487 488
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
    # create expression for parsing
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
489 490 491 492
    if(length(input$inSelGroup) == 0)
      return(NULL)
    loc.s.gr = sprintf("paste(%s, sep=';')",
                       paste(input$inSelGroup, sep = '', collapse = ','))
493 494 495
    
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
496 497 498 499
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
    locBut = input$chBhighlightTraj
    
dmattek's avatar
dmattek committed
500 501
    
    # Find column names with position
dmattek's avatar
Mod:  
dmattek committed
502 503
    loc.s.pos.x = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*X') | names(loc.dt) %like% c('.*os.x')]
    loc.s.pos.y = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*Y') | names(loc.dt) %like% c('.*os.y')]
dmattek's avatar
dmattek committed
504 505 506 507 508 509
    
    if (length(loc.s.pos.x) == 1 & length(loc.s.pos.y) == 1)
      locPos = TRUE
    else
      locPos = FALSE
    
510 511 512
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
    if (sum(names(loc.dt) %in% 'mid.in') > 0) {
dmattek's avatar
dmattek committed
513
      if (locPos) # position columns present
514 515 516 517 518
      loc.out = loc.dt[, .(
        y = eval(parse(text = loc.s.y)),
        id = trackObjectsLabelUni,
        group = eval(parse(text = loc.s.gr)),
        realtime = eval(parse(text = loc.s.rt)),
dmattek's avatar
dmattek committed
519 520
        pos.x = get(loc.s.pos.x),
        pos.y = get(loc.s.pos.y),
521
        mid.in = mid.in
dmattek's avatar
dmattek committed
522 523 524 525 526 527 528 529 530 531 532
      )] else
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
          realtime = eval(parse(text = loc.s.rt)),
          mid.in = mid.in
        )]
      
      
      
dmattek's avatar
dmattek committed
533 534 535 536 537 538 539
      
      # add 3rd level with status of track selection
      # to a column with trajectory filtering status
      if (locBut) {
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      }
      
540
    } else {
dmattek's avatar
dmattek committed
541
      if (locPos) # position columns present
542 543 544 545
      loc.out = loc.dt[, .(
        y = eval(parse(text = loc.s.y)),
        id = trackObjectsLabelUni,
        group = eval(parse(text = loc.s.gr)),
dmattek's avatar
dmattek committed
546 547 548 549 550 551 552 553 554 555 556
        realtime = eval(parse(text = loc.s.rt)),
        pos.x = get(loc.s.pos.x),
        pos.y = get(loc.s.pos.y)
      )] else
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
          realtime = eval(parse(text = loc.s.rt))
        )]
      
dmattek's avatar
dmattek committed
557 558 559 560 561
      
      # add a column with status of track selection
      if (locBut) {
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
      }
562
    }
563
    
dmattek's avatar
dmattek committed
564 565
    # add XY location if present in the dataset
    
dmattek's avatar
dmattek committed
566 567 568 569 570 571 572
    # remove NAs
    loc.out = loc.out[complete.cases(loc.out)]

    # Trim x-axis (time)
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
573 574
    
    # Normalization
dmattek's avatar
dmattek committed
575
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
576 577 578 579 580 581 582 583 584 585 586 587
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
588 589
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
590 591 592 593
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
594 595 596 597 598 599
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')

    return(loc.out)
dmattek's avatar
dmattek committed
619 620
  })
  
dmattek's avatar
dmattek committed
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
    loc.rownames = loc.out$id
    

    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
    return(loc.out)
  })
  
  # prepare data for plotting timecourses facetted per cluster
  # uses the same dt as for trajectory plotting
  # returns dt with these columns:
  data4hierSparTrajPlot <- reactive({
    cat(file = stderr(), 'data4hierSparTrajPlot\n')
dmattek's avatar
dmattek committed
648
    
dmattek's avatar
dmattek committed
649
    loc.dt = data4trajPlot()
dmattek's avatar
dmattek committed
650
    if (is.null(loc.dt))
dmattek's avatar
dmattek committed
651
      return(NULL)
652
    
dmattek's avatar
dmattek committed
653
    loc.out = loc.dt[realtime %in% input$inSelTpts]
654 655
  })
  
dmattek's avatar
dmattek committed
656 657
  
  # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
dmattek committed
658 659 660 661
  getDataCl = function(in.dend, in.k, in.ids) {
    cat(file = stderr(), 'getDataCl \n')
    cat(in.k, '\n')
    loc.dt.cl = data.table(id = in.ids,
dmattek's avatar
dmattek committed
662 663 664 665
                           cl = cutree(as.dendrogram(in.dend), k = in.k))
  }
  

dmattek's avatar
dmattek committed
666 667 668 669 670 671 672 673 674
  getDataHierClReact = reactive({
    cat(file = stderr(), 'getDataHierClReact \n')
    cat(input$inPlotHierNclust, '\n')
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(userFitDendHier(), k = input$inPlotHierNclust))
    
    loc.dt.cl = merge(loc.dt.cl, getDataCond(), by = 'id')
  })
  
dmattek's avatar
dmattek committed
675 676
  ####
  ## UI for trajectory plot
677
  
dmattek's avatar
dmattek committed
678 679
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
680
    
dmattek's avatar
dmattek committed
681 682 683
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
684
    
dmattek's avatar
dmattek committed
685
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
686
    if (!is.null(loc.v)) {
687
      selectInput(
dmattek's avatar
dmattek committed
688 689 690
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
691
        width = '100%',
dmattek's avatar
dmattek committed
692
        multiple = TRUE
693
      )
dmattek's avatar
dmattek committed
694 695 696
    }
  })
  
dmattek's avatar
dmattek committed
697
  output$uiPlotTraj = renderUI({
dmattek's avatar
dmattek committed
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    if (input$chBplotTrajInt)
      plotlyOutput(
        "outPlotTrajInt",
        width = paste0(input$inPlotTrajWidth, '%'),
        height = paste0(input$inPlotTrajHeight, 'px')
      ) else
        plotOutput(
          "outPlotTraj",
          width = paste0(input$inPlotTrajWidth, '%'),
          height = paste0(input$inPlotTrajHeight, 'px')
        )
  })
  
  output$outPlotTraj <- renderPlot({

    loc.p = plotTraj()
    if(is.null(loc.p))
      return(NULL)
    
    return(loc.p)
dmattek's avatar
dmattek committed
718
  })
dmattek's avatar
dmattek committed
719

dmattek's avatar
dmattek committed
720
  
dmattek's avatar
dmattek committed
721
  output$outPlotTrajInt <- renderPlotly({
dmattek's avatar
dmattek committed
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    # This is required to avoid
    # "Warning: Error in <Anonymous>: cannot open file 'Rplots.pdf'"
    # When running on a server. Based on:
    # https://github.com/ropensci/plotly/issues/494
    if (names(dev.cur()) != "null device")
      dev.off()
    pdf(NULL)
    
    loc.p = plotTraj()
    if(is.null(loc.p))
      return(NULL)
    
    return(plotly_build(loc.p))
  })
  
dmattek's avatar
dmattek committed
737 738
  
  
dmattek's avatar
dmattek committed
739
  # Trajectory plot - download pdf
dmattek's avatar
dmattek committed
740
  callModule(downPlot, "downPlotTraj", 'tcourses.pdf', plotTraj, TRUE)
dmattek's avatar
dmattek committed
741 742
  
  plotTraj <- function() {
dmattek's avatar
dmattek committed
743
    cat(file = stderr(), 'plotTraj: in\n')
dmattek's avatar
dmattek committed
744
    locBut = input$butPlotTraj
dmattek's avatar
dmattek committed
745 746
    
    if (locBut == 0) {
dmattek's avatar
dmattek committed
747
      cat(file = stderr(), 'plotTraj: Go button not pressed\n')
dmattek's avatar
dmattek committed
748 749 750 751
      
      return(NULL)
    }
    
752
    loc.dt = isolate(data4trajPlot())
dmattek's avatar
dmattek committed
753
    
dmattek's avatar
dmattek committed
754
    cat("plotTraj: on to plot\n\n")
755
    if (is.null(loc.dt)) {
dmattek's avatar
dmattek committed
756
      cat(file = stderr(), 'plotTraj: dt is NULL\n')
dmattek's avatar
dmattek committed
757
      return(NULL)
758 759
    }
    
dmattek's avatar
dmattek committed
760
    cat(file = stderr(), 'plotTraj: dt not NULL\n')
dmattek's avatar
dmattek committed
761
    
dmattek's avatar
dmattek committed
762

dmattek's avatar
dmattek committed
763
    # Future: change such that a column with colouring status is chosen by the user
764 765
    # colour trajectories, if dataset contains mi.din column
    # with filtering status of trajectory
dmattek's avatar
dmattek committed
766
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
767 768 769
      loc.line.col.arg = 'mid.in'
    else
      loc.line.col.arg = NULL
dmattek's avatar
dmattek committed
770 771 772 773 774 775 776 777 778

    # select every other point for plotting
    loc.dt = loc.dt[, .SD[seq(1, .N, input$sliPlotTrajSkip)], by = id]
    
    # check if columns with XY positions are present
    if (sum(names(loc.dt) %like% 'pos') == 2)
      locPos = TRUE
    else
      locPos = FALSE
dmattek's avatar
dmattek committed
779 780
    
    p.out = myGgplotTraj(
781 782 783 784 785 786
      dt.arg = loc.dt,
      x.arg = 'realtime',
      y.arg = 'y',
      group.arg = "id",
      facet.arg = 'group',
      facet.ncol.arg = input$inPlotTrajFacetNcol,
787
      xlab.arg = 'Time (min)',
dmattek's avatar
dmattek committed
788 789
      line.col.arg = loc.line.col.arg,
      aux.label1 = if (locPos) 'pos.x' else NULL,
dmattek's avatar
dmattek committed
790 791
      aux.label2 = if (locPos) 'pos.y' else NULL,
      stat.arg = input$chBPlotTrajStat
dmattek's avatar
dmattek committed
792
    )
dmattek's avatar
dmattek committed
793
    
dmattek's avatar
dmattek committed
794 795 796
    return(p.out)
  }
  
dmattek's avatar
dmattek committed
797
  
dmattek's avatar
dmattek committed
798 799
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
800
  
dmattek's avatar
dmattek committed
801 802
  
  
dmattek's avatar
dmattek committed
803 804 805
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
  ##### Hierarchical clustering
  
  output$uiPlotHierClSel = renderUI({
    if(input$chBPlotHierClSel) {
      selectInput('inPlotHierClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  
  userFitDendHier <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    cl.dist = dist(dm.t, method = s.cl.diss[as.numeric(input$selectPlotHierDiss)])
    cl.hc = hclust(cl.dist, method = s.cl.linkage[as.numeric(input$selectPlotHierLinkage)])
    cl.lev = rev(row.names(dm.t))
    
    dend <- as.dendrogram(cl.hc)
    dend <- color_branches(dend, k = input$inPlotHierNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHier <- function() {
    
    loc.dm = data4clust()
    if (is.null(loc.dm))
      return(NULL)
    
    loc.dend <- userFitDendHier()
    if (is.null(loc.dend))
      return(NULL)
    
    if (input$inPlotHierRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(loc.dend)
    col_labels <- col_labels[order(order.dendrogram(loc.dend))]
    
    if (input$selectPlotHierDend) {
      assign("var.tmp.1", loc.dend)
      var.tmp.2 = "row"
    } else {
      assign("var.tmp.1", FALSE)
      var.tmp.2 = "none"
    }
    
    loc.p = heatmap.2(
      loc.dm,
      Colv = "NA",
      Rowv = var.tmp.1,
      srtCol = 90,
      dendrogram = var.tmp.2,
      trace = "none",
      key = input$selectPlotHierKey,
      margins = c(input$inPlotHierMarginX, input$inPlotHierMarginY),
      col = my_palette,
      na.col = grey(input$inPlotHierNAcolor),
      denscol = "black",
      density.info = "density",
      RowSideColors = col_labels,
      colRow = col_labels,
#      sepcolor = grey(input$inPlotHierGridColor),
#      colsep = 1:ncol(loc.dm),
#      rowsep = 1:nrow(loc.dm),
      cexRow = input$inPlotHierFontX,
      cexCol = input$inPlotHierFontY,
      main = paste(
        "Distance measure: ",
        s.cl.diss[as.numeric(input$selectPlotHierDiss)],
        "\nLinkage method: ",
        s.cl.linkage[as.numeric(input$selectPlotHierLinkage)]
      )
    )
    
    return(loc.p)
  }
  
  
  plotHierTraj <- function(){
    cat(file = stderr(), 'plotHierTraj: in\n')
    
    loc.dt = isolate(data4trajPlot())
    
    cat("plotHierTraj: on to plot\n\n")
    if (is.null(loc.dt)) {
      cat(file = stderr(), 'plotHierTraj: dt is NULL\n')
      return(NULL)
    }
    
    cat(file = stderr(), 'plotHierTraj: dt not NULL\n')
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
dmattek committed
911
    loc.dt.cl = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # display only selected clusters
    if(isolate(input$chBPlotHierClSel))
      loc.dt = loc.dt[cl %in% isolate(input$inPlotHierClSel)]
    
    # Future: change such that a column with colouring status is chosen by the user
    # colour trajectories, if dataset contains mi.din column
    # with filtering status of trajectory
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      loc.line.col.arg = 'mid.in'
    else
      loc.line.col.arg = NULL
    
    p.out = myGgplotTraj(
      dt.arg = loc.dt,
      x.arg = 'realtime',
      y.arg = 'y',
      group.arg = "id",
      facet.arg = 'cl',
      facet.ncol.arg = input$inPlotTrajFacetNcol,
      xlab.arg = 'Time (min)',
      line.col.arg = loc.line.col.arg
    )
    
    return(p.out)
  }
  
  
dmattek's avatar
dmattek committed
941
  # download a list of cellIDs with cluster assignments
dmattek's avatar
dmattek committed
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
  output$downCellCl <- downloadHandler(
    filename = function() {
      paste0('clust_hierch_data_',
             s.cl.diss[as.numeric(input$selectPlotHierDiss)],
             '_',
             s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  output$downCellClSpar <- downloadHandler(
    filename = function() {
      paste0('clust_hierchSpar_data_',
             s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
             '_',
             s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  
    # callModule(downCellCl, 'downDataHier', paste0('clust_hierch_data_',
    #                                               s.cl.diss[as.numeric(input$selectPlotHierDiss)],
    #                                               '_',
    #                                               s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv'),
    #            getDataCl(userFitDendHier, input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim))
    # 
dmattek's avatar
dmattek committed
975
  
dmattek's avatar
dmattek committed
976 977 978 979 980 981
    output$downloadDataClean <- downloadHandler(
      filename = 'tCoursesSelected_clean.csv',
      content = function(file) {
        write.csv(data4trajPlot(), file, row.names = FALSE)
      }
    )
dmattek's avatar
dmattek committed
982 983 984
    
    
    
dmattek's avatar
dmattek committed
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
  # Barplot with distribution of clusters across conditions
  plotHierClDist = function() {
    cat(file = stderr(), 'plotClDist: in\n')
    
    # get cell IDs with cluster assignments depending on dendrogram cut
    loc.dend <- isolate(userFitDendHier())
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClDist: loc.dend is NULL\n')
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(as.dendrogram(loc.dend), k = input$inPlotHierNclust))
    
    
dmattek's avatar
dmattek committed
1000
    # get cellIDs with condition name
dmattek's avatar
dmattek committed
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    loc.dt.gr = isolate(getDataCond())
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotClDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # display only selected clusters
    if(isolate(input$chBPlotHierClSel))
      loc.dt = loc.dt[cl %in% isolate(input$inPlotHierClSel)]
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
    
    p.out = ggplot(loc.dt.aggr, aes(x = group, y = nCells)) +
      geom_bar(aes(fill = as.factor(cl)), stat = 'identity', position = 'fill') +
      scale_y_continuous(labels = percent) +
      ylab("percentage of cells\n") +  
      xlab("") +  
      scale_fill_discrete(name = "Cluster no.") +
      myGgplotTheme
    
    return(p.out)
    
  }
  
  #  Hierarchical - display heatmap
  getPlotHierHeatMapHeight <- function() {
    return (input$inPlotHierHeatMapHeight)
  }
  
  getPlotHierTrajHeight <- function() {
    return (input$inPlotHierTrajHeight)
  }
  
  output$outPlotHier <- renderPlot({
    locBut = input$butPlotHierHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHier: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHier()
  }, height = getPlotHierHeatMapHeight)
  
  #  Hierarchical - display timecourses plot
  output$outPlotHierTraj <- renderPlot({
    locBut = input$butPlotHierTraj
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierTraj: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierTraj()
  })
  
  #  Hierarchical - display bar plot
  output$outPlotHierClDist <- renderPlot({
    locBut = input$butPlotHierClDist
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotClDist: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierClDist()
  })
  
  
  
dmattek's avatar
dmattek committed
1077 1078 1079 1080 1081 1082
  #  Hierarchical - Heat Map - download pdf
  callModule(downPlot, "downPlotHier",       paste0('clust_hierch_heatMap_',
                                                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                    '_',
                                                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'), plotHier)

dmattek's avatar
dmattek committed
1083
  # Hierarchical - Trajectories - download pdf
dmattek's avatar
dmattek committed
1084 1085 1086 1087 1088
  callModule(downPlot, "downPlotHierTraj",       paste0('clust_hierch_tCourses_',
                                                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                    '_',
                                                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'), plotHierTraj, TRUE)

dmattek's avatar
dmattek committed
1089
  # Hierarchical - Bar Plot - download pdf
dmattek's avatar
dmattek committed
1090 1091 1092 1093
  callModule(downPlot, "downPlotHierClDist",       paste0('clust_hierch_clDist_',
                                                        s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                        '_',
                                                        s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'), plotHierClDist, TRUE)
dmattek's avatar
dmattek committed
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
  
  ##### Sparse hierarchical clustering using sparcl
  
  # UI for advanced options
  output$uiPlotHierSparNperms = renderUI({
    if (input$inHierSparAdv)
      sliderInput(
        'inPlotHierSparNperms',
        'Number of permutations',
        min = 1,
        max = 20,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  # UI for advanced options
  output$uiPlotHierSparNiter = renderUI({
    if (input$inHierSparAdv)
      sliderInput(
        'inPlotHierSparNiter',
        'Number of iterations',
        min = 1,
        max = 50,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  output$uiPlotHierSparClSel = renderUI({
    if(input$chBPlotHierSparClSel) {
      selectInput('inPlotHierSparClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierSparNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  

  getPlotHierSparHeatMapHeight <- function() {
    return (input$inPlotHierSparHeatMapHeight)
  }
  
  userFitHierSpar <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    #cat('rownames: ', rownames(dm.t), '\n')
    
    perm.out <- HierarchicalSparseCluster.permute(
      dm.t,
      wbounds = NULL,
      nperms = ifelse(input$inHierSparAdv, input$inPlotHierSparNperms, 1),
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    
    sparsehc <- HierarchicalSparseCluster(
      dists = perm.out$dists,
      wbound = perm.out$bestw,
      niter = ifelse(input$inHierSparAdv, input$inPlotHierSparNiter, 1),
      method = s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)],
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    return(sparsehc)
  })
  
  
  userFitDendHierSpar <- reactive({
    sparsehc = userFitHierSpar()
    if (is.null(sparsehc)) {
      return()
    }
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHierSpar <- function() {
    
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    if (input$inPlotHierSparRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(dend)
    col_labels <- col_labels[order(order.dendrogram(dend))]
    
    if (input$selectPlotHierSparDend == 1)
      assign("var.tmp", dend)
    else
      assign("var.tmp", FALSE)
    
    
    loc.colnames = paste0(ifelse(sparsehc$ws == 0, "",
                                 ifelse(
                                   sparsehc$ws <= 0.1,
                                   "* ",
                                   ifelse(sparsehc$ws <= 0.5, "** ", "*** ")
                                 )),  colnames(dm.t))
    
    loc.colcol   = ifelse(sparsehc$ws == 0,
                          "black",
                          ifelse(
                            sparsehc$ws <= 0.1,
                            "blue",
                            ifelse(sparsehc$ws <= 0.5, "green", "red")
                          ))
    
    
    loc.p = heatmap.2(
      dm.t,
      Colv = "NA",
      Rowv = var.tmp,
      srtCol = 90,
      dendrogram = ifelse(input$selectPlotHierSparDend == 1, "row", 'none'),
      trace = "none",
      key = input$selectPlotHierSparKey,
      margins = c(
        input$inPlotHierSparMarginX,
        input$inPlotHierSparMarginY
      ),
      col = my_palette,
      na.col = grey(input$inPlotHierSparNAcolor),
      denscol = "black",
      density.info = "density",
      RowSideColors = col_labels,
      colRow = col_labels,
      colCol = loc.colcol,
      labCol = loc.colnames,
#      sepcolor = grey(input$inPlotHierSparGridColor),
#      colsep = 1:ncol(dm.t),
#      rowsep = 1:nrow(dm.t),
      cexRow = input$inPlotHierSparFontX,
      cexCol = input$inPlotHierSparFontY,
      main = paste("Linkage method: ", s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)])
    )
    
    return(loc.p)
  }
  
  
  plotHierSparTraj <- function(){
    cat(file = stderr(), 'plotHierSparTraj: in\n')

    loc.dt = isolate(data4trajPlot())
    
    cat("plotHierSparTraj: on to plot\n\n")
    if (is.null(loc.dt)) {
      cat(file = stderr(), 'plotHierSparTraj: dt is NULL\n')
      return(NULL)
    }
    
    cat(file = stderr(), 'plotHierSparTraj: dt not NULL\n')
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
dmattek committed
1271
    loc.dt.cl = getDataCl(userFitDendHierSpar(), isolate(input$inPlotHierSparNclust), getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # plot only selected clusters
    if(isolate(input$chBPlotHierSparClSel))
      loc.dt = loc.dt[cl %in% isolate(input$inPlotHierSparClSel)]
    
    
    # Future: change such that a column with colouring status is chosen by the user
    # colour trajectories, if dataset contains mi.din column
    # with filtering status of trajectory
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      loc.line.col.arg = 'mid.in'
    else
      loc.line.col.arg = NULL
    
    p.out = myGgplotTraj(
      dt.arg = loc.dt,
      x.arg = 'realtime',
      y.arg = 'y',
      group.arg = "id",
      facet.arg = 'cl',
      facet.ncol.arg = input$inPlotTrajFacetNcol,
      xlab.arg = 'Time (min)',
      line.col.arg = loc.line.col.arg
    )
    
    return(p.out)
  }
  
  
  # Barplot with distribution of clusters across conditions
  plotHierSparClDist = function() {
    cat(file = stderr(), 'plotHierSparClDist: in\n')
    
    # get cell IDs with cluster assignments depending on dendrogram cut
    sparsehc <- isolate(userFitHierSpar())
    if (is.null(sparsehc)) {
      cat(file = stderr(), 'plotHierSparClDist: sparsehc is NULL\n')
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(as.dendrogram(sparsehc$hc), k = input$inPlotHierSparNclust))
    
    
    loc.dt.gr = isolate(getDataCond())
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotHierSparClDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # plot only selected clusters
    if(isolate(input$chBPlotHierSparClSel))
      loc.dt = loc.dt[cl %in% isolate(input$inPlotHierSparClSel)]
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
    p.out = ggplot(loc.dt.aggr, aes(x = group, y = nCells)) +
      geom_bar(aes(fill = as.factor(cl)), stat = 'identity', position = 'fill') +
      scale_y_continuous(labels = percent) +
      ylab("percentage of cells\n") +  
      xlab("") +  
      scale_fill_discrete(name = "Cluster no.") +
      myGgplotTheme
    
    return(p.out)
    
  }

  # Sparse Hierarchical - display heatmap
  output$outPlotHierSpar <- renderPlot({
    locBut = input$butPlotHierSparHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSpar: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSpar()
  }, height = getPlotHierSparHeatMapHeight)
  
  # Sparse Hierarchical - display timecourses plot
  output$outPlotHierSparTraj <- renderPlot({
    locBut = input$butPlotHierSparTraj
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSparTraj: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSparTraj()
  })
  
  # Sparse Hierarchical - display timecourses plot
  output$outPlotHierSparClDist <- renderPlot({
    locBut = input$butPlotHierSparClDist
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSparClDist: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSparClDist()
  })
  
  
  # Sparse Hierarchical - Heat Map - download pdf
dmattek's avatar
dmattek committed
1384 1385 1386 1387
  callModule(downPlot, "downPlotHierSparHM",       paste0('clust_hierchSparse_heatMap_',
                                                    s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                    '_',
                                                    s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'), plotHierSpar)
dmattek's avatar
dmattek committed
1388 1389
  
  # Sparse Hierarchical - Trajectories - download pdf
dmattek's avatar
dmattek committed
1390 1391 1392 1393
  callModule(downPlot, "downPlotHierSparTraj",       paste0('clust_hierchSparse_tCourses_',
                                                        s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                        '_',
                                                        s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'), plotHierSparTraj, TRUE)
dmattek's avatar
dmattek committed
1394
  
dmattek's avatar
dmattek committed
1395 1396 1397 1398 1399
  # Sparse Hierarchical - Bar Plot - download pdf
  callModule(downPlot, "downPlotHierSparClDist",       paste0('clust_hierchSparse_clDist_',
                                                          s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                          '_',
                                                          s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'), plotHierSparClDist, TRUE)
dmattek's avatar
dmattek committed
1400
  
dmattek's avatar
dmattek committed
1401

dmattek's avatar
dmattek committed
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
  # Sparse Hierarchical clustering (sparcl) interactive version
  output$plotHierSparInt <- renderD3heatmap({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    if (input$inPlotHierSparRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(dend)
    col_labels <- col_labels[order(order.dendrogram(dend))]
    
    if (input$selectPlotHierSparDend == 1)
      assign("var.tmp", dend)
    else
      assign("var.tmp", FALSE)
    
    
    loc.colnames = paste0(colnames(dm.t), ifelse(sparsehc$ws == 0, "",
                                                 ifelse(
                                                   sparsehc$ws <= 0.1,
                                                   " *",
                                                   ifelse(sparsehc$ws <= 0.5, " **", " ***")
                                                 )))
    
    d3heatmap(
      dm.t,
      Rowv = var.tmp,
      dendrogram = ifelse(input$selectPlotHierSparDend == 1, "row", 'none'),
      trace = "none",
      revC = FALSE,
      na.rm = FALSE,
      margins = c(
        input$inPlotHierSparMarginX * 10,
        input$inPlotHierSparMarginY * 10
      ),
      colors = my_palette,
      na.col = grey(input$inPlotHierSparNAcolor),
      cexRow = input$inPlotHierSparFontY,
      cexCol = input$inPlotHierSparFontX,
      xaxis_height = input$inPlotHierSparMarginX * 10,
      yaxis_width = input$inPlotHierSparMarginY * 10,
      show_grid = TRUE,
      #labRow = rownames(dm.t),
      labCol = loc.colnames
    )
  })
1460 1461 1462

  callModule(clustBay, 'TabClustBay', data4clust)
  
dmattek's avatar
dmattek committed
1463
})