server.R 24.6 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9 10 11
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
12
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
13
library(plotly)
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
14
#library(d3heatmap) # for interactive heatmap
dmattek's avatar
dmattek committed
15
library(dendextend) # for color_branches
16
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
17
library(RColorBrewer)
dmattek's avatar
dmattek committed
18
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
19
library(scales) # for percentages on y scale
dmattek's avatar
Added:  
dmattek committed
20 21
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
dmattek's avatar
dmattek committed
22

23
# Global parameters ----
dmattek's avatar
dmattek committed
24
# change to increase the limit of the upload file size
dmattek's avatar
Added:  
dmattek committed
25
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
26

dmattek's avatar
dmattek committed
27
# Server logic ----
dmattek's avatar
dmattek committed
28
shinyServer(function(input, output, session) {
29
  useShinyjs()
dmattek's avatar
dmattek committed
30
  
31
  # This is only set at session start
dmattek's avatar
dmattek committed
32
  # We use this as a way to determine which input was
33 34
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
35 36 37
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
38 39
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
40
  )
dmattek's avatar
dmattek committed
41 42 43 44 45 46 47 48 49

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
50
  
dmattek's avatar
dmattek committed
51
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
52
  
dmattek's avatar
dmattek committed
53
  # Generate random dataset
54
  dataGen1 <- eventReactive(input$inDataGen1, {
55 56
    if (DEB)
      cat("dataGen1\n")
57
    
dmattek's avatar
dmattek committed
58
    return(LOCgenTraj(in.nwells = 3, in.addout = 3))
59 60
  })
  
dmattek's avatar
dmattek committed
61
  # Load main data file
62
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
63 64 65
    if (DEB)
      cat("dataLoadNuc\n")

66 67 68 69 70 71 72 73 74 75 76
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
77 78 79 80
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
81

dmattek's avatar
dmattek committed
82
  # Load data with trajectories to remove
83
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
84 85 86
    if (DEB)
      cat(file = stdout(), "dataLoadTrajRem\n")
    
87 88 89 90 91 92 93 94 95 96
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
97
  
dmattek's avatar
dmattek committed
98
  # Load data with stimulation pattern
99
  dataLoadStim <- eventReactive(input$inButLoadStim, {
100 101 102
    if (DEB)
      cat(file = stdout(), "dataLoadStim\n")
    
103 104 105 106 107 108 109 110 111 112 113 114
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:  
dmattek committed
115 116
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
117 118
    if (DEB)
      cat(file = stdout(), 'UI uiFileLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
119 120 121 122 123 124 125 126 127 128
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
129 130
    if (DEB)
      cat(file = stdout(), 'UI uiButLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
131 132 133 134 135
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

136 137
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
138 139
    if (DEB)
      cat(file = stdout(), 'UI uiFileLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
140
    
141 142 143 144 145 146 147 148 149
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
150 151
    if (DEB)
      cat(file = stdout(), 'UI uiButLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
152
    
153 154
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:  
dmattek committed
155 156
  })
  
157

dmattek's avatar
dmattek committed
158
  
dmattek's avatar
dmattek committed
159
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
160
  output$varSelTrackLabel = renderUI({
161 162 163
    if (DEB)
      cat(file = stdout(), 'UI varSelTrackLabel\n')
    
dmattek's avatar
dmattek committed
164
    locCols = getDataNucCols()
165
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
166 167 168
    
    selectInput(
      'inSelTrackLabel',
169
      'Select Track Label:',
dmattek's avatar
dmattek committed
170 171 172 173 174 175 176
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
177 178 179
    if (DEB)
      cat(file = stdout(), 'UI varSelTime\n')
    
dmattek's avatar
dmattek committed
180
    locCols = getDataNucCols()
181
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
182 183 184
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
185
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
186 187 188 189 190
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
191 192

  output$varSelTimeFreq = renderUI({
193 194
    if (DEB)
      cat(file = stdout(), 'UI varSelTimeFreq\n')
195
    
196 197 198 199 200 201 202 203 204 205
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
206
  })
dmattek's avatar
dmattek committed
207
  
dmattek's avatar
dmattek committed
208
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
209
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
210 211
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
212
  output$varSelGroup = renderUI({
213 214
    if (DEB)
      cat(file = stdout(), 'UI varSelGroup\n')
dmattek's avatar
dmattek committed
215
    
dmattek's avatar
dmattek committed
216 217 218 219 220
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
221
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
222 223

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
224 225
        selectInput(
          'inSelGroup',
226
          'Select columns for plot grouping:',
dmattek's avatar
dmattek committed
227 228 229 230 231
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
232 233 234 235
      }
    }
  })
  
236 237
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
238
  output$varSelSite = renderUI({
239 240
    if (DEB)
      cat(file = stdout(), 'UI varSelSite\n')
dmattek's avatar
dmattek committed
241
    
242
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
243
      locCols = getDataNucCols()
244
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
245 246 247
      
      selectInput(
        'inSelSite',
248
        'Select grouping columns to add to track label:',
dmattek's avatar
Added:  
dmattek committed
249 250
        locCols,
        width = '100%',
251 252
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:  
dmattek committed
253 254
      )
    }
dmattek's avatar
dmattek committed
255 256 257 258
  })
  
  
  output$varSelMeas1 = renderUI({
259 260
    if (DEB)
      cat(file = stdout(), 'UI varSelMeas1\n')
dmattek's avatar
dmattek committed
261 262 263
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
264
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|y|Meas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
265

dmattek's avatar
dmattek committed
266 267 268 269 270 271 272 273 274 275 276 277
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
278 279 280
    if (DEB)
      cat(file = stdout(), 'UI varSelMeas2\n')
    
dmattek's avatar
dmattek committed
281 282 283 284
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
285
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|y|Meas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
286

dmattek's avatar
dmattek committed
287 288 289 290 291 292 293 294 295 296
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
297
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
298
  output$uiSlTimeTrim = renderUI({
299 300
    if (DEB)
      cat(file = stdout(), 'UI uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
322
  
dmattek's avatar
dmattek committed
323
  # UI-side-panel-normalization ----
dmattek's avatar
dmattek committed
324
  output$uiChBnorm = renderUI({
325 326
    if (DEB)
      cat(file = stdout(), 'UI uiChBnorm\n')
dmattek's avatar
dmattek committed
327 328 329 330 331 332 333 334 335 336 337
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
338 339
    if (DEB)
      cat(file = stdout(), 'UI uiSlNorm\n')
dmattek's avatar
dmattek committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
355 356
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
357 358 359 360 361
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
362 363
    if (DEB)
      cat(file = stdout(), 'UI uiChBnormRobust\n')
dmattek's avatar
dmattek committed
364 365 366 367 368 369 370 371 372
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
373 374
    if (DEB)
      cat(file = stdout(), 'UI uiChBnormGroup\n')
dmattek's avatar
dmattek committed
375 376 377
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
378
                   label = 'Normalisation grouping',
379
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
380 381 382 383
    }
  })
  
  
dmattek's avatar
dmattek committed
384
  
dmattek's avatar
dmattek committed
385

dmattek's avatar
dmattek committed
386
  # Processing-data ----
dmattek's avatar
dmattek committed
387
  
388 389 390 391 392 393 394 395 396 397 398 399
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
400
    # Don't wrap around if(DEB)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
437
  getDataNucCols <- reactive({
438 439 440
    if (DEB)
      cat(file = stdout(), 'getDataNucCols: in\n')
    
441 442 443 444 445 446 447 448 449 450
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
451 452 453
    if (DEB)
      cat(file = stdout(), 'dataMod\n')
    
454 455
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
456
    if (is.null(loc.dt))
457 458
      return(NULL)
    
459
    if (input$chBtrackUni) {
460
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
461
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:  
dmattek committed
462
    } else {
463
      # stay with track ID provided in the loaded dataset; has to be unique
464
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
465 466
    }
    
dmattek's avatar
dmattek committed
467
    
dmattek's avatar
Added:  
dmattek committed
468 469 470
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
471 472
      if (DEB)
        cat(file = stdout(), 'dataMod: trajRem not NULL\n')
dmattek's avatar
Added:  
dmattek committed
473 474
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
475
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
476 477
    }
    
478 479 480
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
481 482 483
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
484 485 486
    if (DEB)
      cat(file = stdout(), 'getDataTrackObjLabUni\n')
    
dmattek's avatar
dmattek committed
487
    loc.dt = dataMod()
488
    
dmattek's avatar
dmattek committed
489 490 491 492
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
493 494
  })
  
dmattek's avatar
Mod:  
dmattek committed
495
  
dmattek's avatar
dmattek committed
496 497 498
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
499
  getDataTpts <- reactive({
500 501 502
    if (DEB)
      cat(file = stdout(), 'getDataTpts\n')
    
dmattek's avatar
dmattek committed
503
    loc.dt = dataMod()
504
    
dmattek's avatar
dmattek committed
505 506 507 508
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
509 510
  })
  
dmattek's avatar
dmattek committed
511
  
512 513 514
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
515
  #    realtime - selected from input
dmattek's avatar
dmattek committed
516
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
517
  #               (can be a single column or result of an operation on two cols)
518 519
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
520 521
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
522 523 524 525
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
526
  data4trajPlot <- reactive({
527 528
    if (DEB)
      cat(file = stdout(), 'data4trajPlot\n')
529 530
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
531
    if (is.null(loc.dt))
532 533
      return(NULL)
    
534
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
535
    if (input$inSelMath == '')
536 537 538 539 540 541
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
542
    # create expression for 'group' column
543 544
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
545 546 547 548 549 550 551 552 553 554 555
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
556
    
dmattek's avatar
dmattek committed
557 558

    # column name with time
559 560
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
561 562
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
563
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
564
    
dmattek's avatar
Added:  
dmattek committed
565 566
    
    # Find column names with position
567
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
568
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
569
    
570 571
    if (DEB)
      cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
572 573
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
574 575 576 577
      locPos = TRUE
    else
      locPos = FALSE
    
578 579 580 581
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
582 583 584 585 586 587
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
588
      loc.s.objnum = loc.s.objnum[1]
589
      locObjNum = TRUE
dmattek's avatar
dmattek committed
590
    }
591 592
    
    
593 594
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:  
dmattek committed
637
        # add a column with status of track selection
638
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
639
    }
640
      
dmattek's avatar
dmattek committed
641

642
    ## Interpolate missing data and NA data points
643
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
644
    # Tracks are interpolated only within first and last time points of every track id
645 646
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
647
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
648
    
649
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
650

651 652
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
dmattek's avatar
dmattek committed
653
      loc.out = loc.out[setkeyv(loc.out[, .(seq(min(get(COLRT), na.rm = T), max(get(COLRT), na.rm = T), input$inSelTimeFreq)), by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
654 655
      
      # x-check: print all rows with NA's
656 657 658 659
      if (DEB) {
        cat(file = stdout(), 'Rows with NAs:\n')
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
660 661 662 663
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
664
        s.cols = c(COLY, COLPOSX, COLPOSY)
665
      else
dmattek's avatar
dmattek committed
666
        s.cols = c(COLY)
667
      
668 669 670 671 672 673 674 675 676 677 678 679
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

        loc.out[, (col) := na.interpolation(get(col)), by = c(COLID)]        
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
680 681 682 683 684 685 686 687 688 689 690 691 692 693
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
694
    
695
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
696
    if(input$chBtimeTrim) {
dmattek's avatar
dmattek committed
697
      loc.out = loc.out[get(COLRT) >= input$slTimeTrim[[1]] & get(COLRT) <= input$slTimeTrim[[2]] ]
dmattek's avatar
dmattek committed
698
    }
dmattek's avatar
dmattek committed
699
    
700
    ## Normalization
dmattek's avatar
dmattek committed
701
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
702
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
703
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
704
        in.dt = loc.out,
dmattek's avatar
dmattek committed
705 706
        in.meas.col = COLY,
        in.rt.col = COLRT,
dmattek's avatar
dmattek committed
707 708 709 710 711 712 713
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
714 715
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
716 717
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
718
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
719 720 721
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
722 723
  })
  
dmattek's avatar
dmattek committed
724 725 726 727 728 729
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
730 731
    if (DEB)  
      cat(file = stdout(), 'data4clust\n')
dmattek's avatar
dmattek committed
732
    
dmattek's avatar
dmattek committed
733
    loc.dt = data4trajPlotNoOut()
dmattek's avatar
dmattek committed
734 735 736
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:  
dmattek committed
737
    #print(loc.dt)
dmattek's avatar
dmattek committed
738
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:  
dmattek committed
739
    #print(loc.out)
dmattek's avatar
dmattek committed
740 741
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:  
dmattek committed
742
    
dmattek's avatar
dmattek committed
743 744
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
745
    
746 747
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
Added:  
dmattek committed
748 749 750 751
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
752
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
Added:  
dmattek committed
753
    
dmattek's avatar
dmattek committed
754
    return(loc.out)
dmattek's avatar
Mod:  
dmattek committed
755
  }) 
dmattek's avatar
dmattek committed
756
  
dmattek's avatar
dmattek committed
757
  
758 759 760
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
761 762
    if (DEB)  
      cat(file = stdout(), 'data4stimPlot\n')
763 764
    
    if (input$chBstim) {
765 766
      if (DEB)  
        cat(file = stdout(), 'data4stimPlot: stim not NULL\n')
767 768 769 770
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
771 772 773
      if (DEB)  
        cat(file = stdout(), 'data4stimPlot: stim is NULL\n')
      
774 775 776 777
      return(NULL)
    }
  })
  
dmattek's avatar
Added:  
dmattek committed
778 779 780
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
dmattek's avatar
dmattek committed
781
    filename = FCSVTCCLEAN,
dmattek's avatar
Added:  
dmattek committed
782
    content = function(file) {
dmattek's avatar
dmattek committed
783
      write.csv(data4trajPlotNoOut(), file, row.names = FALSE)
dmattek's avatar
Added:  
dmattek committed
784 785 786
    }
  )
  
dmattek's avatar
dmattek committed
787 788 789
  # Plotting-trajectories ----

  # UI for selecting trajectories
790
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
791
  output$varSelHighlight = renderUI({
792 793
    if (DEB)  
      cat(file = stdout(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
794
    
dmattek's avatar
dmattek committed
795 796 797
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
798
    
dmattek's avatar
dmattek committed
799
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
800
    if (!is.null(loc.v)) {
801
      selectInput(
dmattek's avatar
dmattek committed
802 803 804
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
805
        width = '100%',
dmattek's avatar
dmattek committed
806
        multiple = TRUE
807
      )
dmattek's avatar
dmattek committed
808 809 810
    }
  })
  
dmattek's avatar
dmattek committed
811 812 813
  # Taking out outliers 
  data4trajPlotNoOut = callModule(modSelOutliers, 'returnOutlierIDs', data4trajPlot)
  
dmattek's avatar
dmattek committed
814 815
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
dmattek's avatar
dmattek committed
816
             in.data = data4trajPlotNoOut,
dmattek's avatar
dmattek committed
817
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
818
             in.fname = function() return(FPDFTCMEAN))
dmattek's avatar
dmattek committed
819
  
dmattek's avatar
dmattek committed
820
  # Trajectory plotting - individual
dmattek's avatar
dmattek committed
821
  callModule(modTrajPlot, 'modTrajPlot', 
dmattek's avatar
dmattek committed
822
             in.data = data4trajPlotNoOut, 
dmattek's avatar
dmattek committed
823
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
824
             in.fname = function() {return(FPDFTCSINGLE)})
dmattek's avatar
dmattek committed
825 826 827
  
  
  # Tabs ----
828
  ###### AUC calculation and plotting
dmattek's avatar
dmattek committed
829
  callModule(modAUCplot, 'tabAUC', data4trajPlotNoOut, in.fname = function() return(FPDFBOXAUC))
dmattek's avatar
Added:  
dmattek committed
830
  
dmattek's avatar
Added:  
dmattek committed
831
  ###### Box-plot
dmattek's avatar
dmattek committed
832
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlotNoOut, in.fname = function() return(FPDFBOXTP))
dmattek's avatar
dmattek committed
833
  
dmattek's avatar
dmattek committed
834
  ###### Scatter plot
dmattek's avatar
dmattek committed
835
  callModule(tabScatterPlot, 'tabScatter', data4trajPlotNoOut, in.fname = function() return(FPDFSCATTER))
dmattek's avatar
dmattek committed
836
  
dmattek's avatar
dmattek committed
837
  ##### Hierarchical clustering
dmattek's avatar
dmattek committed
838
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
839 840
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
dmattek committed
841
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
842

dmattek's avatar
Mod:  
dmattek committed
843
  
dmattek's avatar
dmattek committed
844
})