auxfunc.R 28 KB
Newer Older
dmattek's avatar
dmattek committed
1
2
3
4
5
6
7
8
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# These are auxilary functions
#


dmattek's avatar
dmattek committed
9
require(ggplot2)
dmattek's avatar
Mod:    
dmattek committed
10
11
12
require(RColorBrewer)
require(gplots) # for heatmap.2
require(grid) # for modifying grob
dmattek's avatar
dmattek committed
13
require(Hmisc) # for CI calculation
dmattek's avatar
dmattek committed
14

15
16

# Global parameters ----
17
18
19
20

# if true, additional output printed to R console
DEB = T

21
22
23
24
25
26
27
28
29
30
# font sizes in pts for plots
PLOTFONTBASE = 12
PLOTFONTAXISTEXT = 12
PLOTFONTAXISTITLE = 12
PLOTFONTFACETSTRIP = 14
PLOTFONTLEGEND = 12

# default number of facets in plots
PLOTNFACETDEFAULT = 3

dmattek's avatar
dmattek committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# internal column names
COLRT   = 'realtime'
COLY    = 'y'
COLID   = 'id'
COLIDUNI = 'trackObjectsLabelUni'
COLGR   = 'group'
COLIN   = 'mid.in'
COLOBJN = 'obj.num'
COLPOSX = 'pos.x'
COLPOSY = 'pos.y'
COLIDX = 'IDX'
COLIDXDIFF = 'IDXdiff'

# file names
FCSVOUTLIERS = 'outliers.csv'
FCSVTCCLEAN  = 'tCoursesSelected_clean.csv'
FPDFTCMEAN   = "tCoursesMeans.pdf"
FPDFTCSINGLE = "tCourses.pdf"
FPDFBOXAUC   = 'boxplotAUC.pdf'
FPDFBOXTP    = 'boxplotTP.pdf'
FPDFSCATTER  = 'scatter.pdf'

dmattek's avatar
dmattek committed
53
# Colour definitions ----
dmattek's avatar
dmattek committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

79
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
80
81
82
83
84
85
86
87
88
89
l.col.pal = list(
  "White-Orange-Red" = 'OrRd',
  "Yellow-Orange-Red" = 'YlOrRd',
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
  "Blues" = "Blues",
  "Spectral" = 'Spectral'
)

90
91
92
93
94
95
96
97
98
99
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
dmattek committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Clustering algorithms ----

s.cl.linkage = c("ward.D",
                 "ward.D2",
                 "single",
                 "complete",
                 "average",
                 "mcquitty",
                 "centroid")

s.cl.spar.linkage = c("average",
                      "complete", 
                      "single",
                      "centroid")

s.cl.diss = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "DTW")
s.cl.spar.diss = c("squared.distance","absolute.value")


# Help text ----
dmattek's avatar
Added:    
dmattek committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Creates a popup with help text
# From: https://gist.github.com/jcheng5/5913297
helpPopup <- function(title, content,
                      placement=c('right', 'top', 'left', 'bottom'),
                      trigger=c('click', 'hover', 'focus', 'manual')) {
  tagList(
    singleton(
      tags$head(
        tags$script("$(function() { $(\"[data-toggle='popover']\").popover(); })")
      )
    ),
    tags$a(
      href = "#", class = "btn btn-mini", `data-toggle` = "popover",
      title = title, `data-content` = content, `data-animation` = TRUE,
      `data-placement` = match.arg(placement, several.ok=TRUE)[1],
      `data-trigger` = match.arg(trigger, several.ok=TRUE)[1],
      #tags$i(class="icon-question-sign")
      # changed based on http://stackoverflow.com/questions/30436013/info-bubble-text-in-a-shiny-interface
      icon("question")
    )
  )
}

help.text = c(
  'Accepts CSV file with a column of cell IDs for removal. 
                   IDs should correspond to those used for plotting. 
  Say, the main data file contains columns Metadata_Site and TrackLabel. 
  These two columns should be then selected in UI to form a unique cell ID, e.g. 001_0001 where former part corresponds to Metadata_Site and the latter to TrackLabel.',
  'Plotting and data processing requires a unique cell ID across entire dataset. A typical dataset from CellProfiler assigns unique cell ID (TrackLabel) within each field of view (Metadata_Site).
149
150
                   Therefore, a unique ID is created by concatenating these two columns. If the dataset already contains a unique ID, UNcheck this box and select a single column only.',
  'This option allows to interpolate NAs or missing data. Some rows in the input file might be missing because a particular time point might not had been acquired. 
151
  This option, interpolates such missing points as well as points with NAs in the measurement column. When this option is checked, the interval of time column must be provided!',
dmattek's avatar
dmattek committed
152
  'Accepts CSV file with 5 columns: grouping (e.g. condition), start and end time points of stimulation, start and end points of y-position, dummy column with id.'
dmattek's avatar
Added:    
dmattek committed
153
154
)

dmattek's avatar
dmattek committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Functions for data processing ----
#' Calculate the mean and CI around time series
#'
#' @param in.dt Data table in long format
#' @param in.col.meas Name of the column with the measurement
#' @param in.col.by Column names for grouping (default NULL - no grouping). Typically, you want to use at least a column with time.
#' @param in.type Choice of normal approximation or boot-strapping
#' @param ... Other params passed to smean.cl.normal and smean.cl.boot; these include \code{conf.int} for the confidence level, \code{B} for the number of boot-strapping iterations.
#'
#' @return Datatable with columns: Mean, lower and upper CI, and grouping columns if provided.
#' @export
#' @import data.table
#' @import Hmisc
#'
#' @examples
#'
#'
#' # generate synthetic time series; 100 time points long, with 10 randomly placed NAs
#' dt.tmp = genTraj(100, 10, 6, 3, in.addna = 10)
#'
#' # calculate single stats from all time points
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor')
#'
#' # calculate the mean and CI along the time course
#' calcTrajCI(dt.tmp, 'objCyto_Intensity_MeanIntensity_imErkCor', 'Metadata_RealTime')
LOCcalcTrajCI = function(in.dt, in.col.meas, in.col.by = NULL, in.type = c('normal', 'boot'), ...) {
  in.type = match.arg(in.type)
  
  if (in.type %like% 'normal')
    loc.dt = in.dt[, as.list(smean.cl.normal(get(in.col.meas), ...)), by = in.col.by] else
      loc.dt = in.dt[, as.list(smean.cl.boot(get(in.col.meas), ...)), by = in.col.by]
    
    return(loc.dt)
}

#' Generate synthetic CellProfiler output with single cell time series
#'
#'
#'
#' @param in.ntpts Number of time points (default 60)
#' @param in.ntracks Number of tracks per FOV (default 10)
#' @param in.nfov Number of FOV (default 6)
#' @param in.nwells Number of wells (default 1)
#' @param in.addna Number of NAs to add randomly in the data (default NULL)
#'
#' @return Data table with the follwoing columns: Metadata_Site, Metadata_Well, Metadata_RealTime, objCyto_Intensity_MeanIntensity_imErkCor (normal distributed),
#' objNuc_Intensity_MeanIntensity_imErkCor (normal distributed), objNuc_Location_X and objNuc_Location_Y (uniform ditributed), TrackLabel
#' @export
#' @import data.table

dmattek's avatar
dmattek committed
205
LOCgenTraj <- function(in.ntpts = 60, in.ntracks = 10, in.nfov = 6, in.nwells = 1, in.addna = NULL, in.addout = NULL) {
dmattek's avatar
dmattek committed
206
207
208
209
210
211
212
213
214
215
216
  
  x.rand.1 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,   1, 0.2), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3,  2, 0.5))
  x.rand.2 = c(rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.25, 0.1), rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 0.5, 0.2),  rnorm(in.ntpts * in.ntracks * in.nfov * 1/3, 1, 0.2))
  
  # add NA's for testing
  if (!is.null(in.addna)) {
    locTabLen = length(x.rand.1)
    x.rand.1[round(runif(in.addna) * locTabLen)] = NA
    x.rand.2[round(runif(in.addna) * locTabLen)] = NA
  }
  
dmattek's avatar
dmattek committed
217
218
219
220
221
222
223
  # add outliers for testing
  if (!is.null(in.addout)) {
    locTabLen = length(x.rand.1)
    x.rand.1[round(runif(in.addout) * locTabLen)] = 10
    x.rand.2[round(runif(in.addout) * locTabLen)] = 10
  }
  
dmattek's avatar
dmattek committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  x.arg = rep(seq(1, in.ntpts), in.ntracks * in.nfov)
  
  dt.nuc = data.table(Metadata_Well = rep(LETTERS[1:in.nwells], each = in.ntpts * in.nfov * in.ntracks / in.nwells),
                      Metadata_Site = rep(1:in.nfov, each = in.ntpts * in.ntracks),
                      Metadata_RealTime = x.arg,
                      objCyto_Intensity_MeanIntensity_imErkCor = x.rand.1,
                      objNuc_Intensity_MeanIntensity_imErkCor  = x.rand.2,
                      objNuc_Location_X = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      objNuc_Location_Y = runif(in.ntpts * in.ntracks * in.nfov, min = 0, max = 1),
                      TrackLabel = rep(1:(in.ntracks*in.nfov), each = in.ntpts))
  
  return(dt.nuc)
}

#' Normalize Trajectory
#'
#' Returns original dt with an additional column with normalized quantity.
#' The column to be normalised is given by 'in.meas.col'.
#' The name of additional column is the same as in.meas.col but with ".norm" suffix added.
#' Normalisation is based on part of the trajectory;
#' this is defined by in.rt.min and max, and the column with time in.rt.col.#'
#'
#' @param in.dt Data table in long format
#' @param in.meas.col String with the column name to normalize
#' @param in.rt.col String with the colum name holding time
#' @param in.rt.min Lower bound for time period used for normalization
#' @param in.rt.max Upper bound for time period used for normalization
#' @param in.by.cols String vector with 'by' columns to calculate normalization per group; if NULL, no grouping is done
#' @param in.robust Whether robust measures should be used (median instead of mean, mad instead of sd); default TRUE
#' @param in.type Type of normalization: z.score or mean (i.e. fold change w.r.t. mean); default 'z-score'
#'
#' @return Returns original dt with an additional column with normalized quantity.
#' @export
#' @import data.table

LOCnormTraj = function(in.dt,
                    in.meas.col,
dmattek's avatar
dmattek committed
261
                    in.rt.col = COLRT,
dmattek's avatar
dmattek committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
                    in.rt.min = 10,
                    in.rt.max = 20,
                    in.by.cols = NULL,
                    in.robust = TRUE,
                    in.type = 'z.score') {
  loc.dt <-
    copy(in.dt) # copy so as not to alter original dt object w intermediate assignments
  
  if (is.null(in.by.cols)) {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE))]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE))]
    
    loc.dt = cbind(loc.dt, loc.dt.pre.aggr)
  }  else {
    if (in.robust)
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = median(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = mad(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    else
      loc.dt.pre.aggr = loc.dt[get(in.rt.col) >= in.rt.min &
                                 get(in.rt.col) <= in.rt.max, .(meas.md = mean(get(in.meas.col), na.rm = TRUE),
                                                                meas.mad = sd(get(in.meas.col), na.rm = TRUE)), by = in.by.cols]
    
    loc.dt = merge(loc.dt, loc.dt.pre.aggr, by = in.by.cols)
  }
  
  
  if (in.type == 'z.score') {
    loc.dt[, meas.norm := (get(in.meas.col) - meas.md) / meas.mad]
  } else {
    loc.dt[, meas.norm := (get(in.meas.col) / meas.md)]
  }
  
  setnames(loc.dt, 'meas.norm', paste0(in.meas.col, '.norm'))
  
  loc.dt[, c('meas.md', 'meas.mad') := NULL]
  return(loc.dt)
}


dmattek's avatar
Added:    
dmattek committed
308

dmattek's avatar
dmattek committed
309
# Functions for clustering ----
dmattek's avatar
dmattek committed
310
311
312
313
314
315
316
317
318

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:    
dmattek committed
319
320
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
321
322
323
324
325
326
327
328
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = names(loc.m),
                         cl = loc.m)
  
329
330
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
331
  return(loc.dt.cl)
dmattek's avatar
Added:    
dmattek committed
332
333
}

dmattek's avatar
dmattek committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
353
354
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
355
356
357
358
359
  return(loc.dt.cl)
}



dmattek's avatar
Added:    
dmattek committed
360
361
362
363
364
365
366
367
368
369
370
371
372
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
    data.table(cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
               cl.col = loc.col_labels)))
}


dmattek's avatar
dmattek committed
373
# Custom plotting functions ----
dmattek's avatar
dmattek committed
374

dmattek's avatar
dmattek committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

#' Custom ggPlot theme based on theme_bw
#'
#' @param in.font.base
#' @param in.font.axis.text
#' @param in.font.axis.title
#' @param in.font.strip
#' @param in.font.legend
#'
#' @return
#' @export
#'
#' @examples
#'
LOCggplotTheme = function(in.font.base = 12,
                       in.font.axis.text = 12,
                       in.font.axis.title = 12,
                       in.font.strip = 14,
                       in.font.legend = 12) {
  loc.theme =
    theme_bw(base_size = in.font.base, base_family = "Helvetica") +
    theme(
      panel.spacing = unit(1, "lines"),
      panel.grid.minor = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      axis.line = element_line(color = "black", size = 0.25),
      axis.text = element_text(size = in.font.axis.text),
      axis.title = element_text(size = in.font.axis.title),
      strip.text = element_text(size = in.font.strip, face = "bold"),
      strip.background = element_blank(),
      legend.key = element_blank(),
      legend.text = element_text(size = in.font.legend),
      legend.key.height = unit(1, "lines"),
      legend.key.width = unit(2, "lines"))
  
  return(loc.theme)
}

dmattek's avatar
dmattek committed
414
415
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
dmattek's avatar
dmattek committed
416
LOCrotatedAxisElementText = function(angle, position='x', size = 12){
dmattek's avatar
dmattek committed
417
418
419
420
421
422
423
424
425
426
427
428
429
  angle     = angle[1]; 
  position  = position[1]
  positions = list(x=0, y=90, top=180, right=270)
  if(!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]",paste(names(positions),collapse=", ")), call.=FALSE)
  if(!is.numeric(angle))
    stop("'angle' must be numeric",call.=FALSE)
  rads = (-angle - positions[[ position ]])*pi/180
  hjust = round((1 - sin(rads)))/2
  vjust = round((1 + cos(rads)))/2
  element_text(size = 12, angle = angle, vjust = vjust, hjust = hjust)
}

430
431
# Plot individual time series
LOCplotTraj = function(dt.arg, # input data table
dmattek's avatar
Mod:    
dmattek committed
432
433
434
435
436
437
438
439
440
441
442
                        x.arg,  # string with column name for x-axis
                        y.arg, # string with column name for y-axis
                        group.arg, # string with column name for grouping time series (typicaly cell ID)
                        facet.arg, # string with column name for facetting
                        facet.ncol.arg = 2, # default number of facet columns
                        facet.color.arg = NULL, # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                        line.col.arg = NULL, # string with column name for colouring time series (typically when individual time series are selected in UI)
                        xlab.arg = NULL, # string with x-axis label
                        ylab.arg = NULL, # string with y-axis label
                        plotlab.arg = NULL, # string with plot label
                        dt.stim.arg = NULL, # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
443
444
                        x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                        y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
dmattek's avatar
dmattek committed
445
                        tfreq.arg = 1,
dmattek's avatar
dmattek committed
446
                        ylim.arg = NULL,
dmattek's avatar
Added:    
dmattek committed
447
                        stim.bar.width.arg = 0.5,
dmattek's avatar
Mod:    
dmattek committed
448
                        aux.label1 = NULL, # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
dmattek's avatar
Added:    
dmattek committed
449
                        aux.label2 = NULL,
450
                        aux.label3 = NULL,
dmattek's avatar
Added:    
dmattek committed
451
452
453
454
455
                        stat.arg = c('', 'mean', 'CI', 'SE')) {
  
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)

dmattek's avatar
Added:    
dmattek committed
456
457
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
458
459
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
460
                            y = y.arg,
dmattek's avatar
Added:    
dmattek committed
461
                            group = group.arg,
462
463
464
465
466
                            label = group.arg))
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
467
  
dmattek's avatar
dmattek committed
468
469
470
471
472
473
474
475
476
477
478
479
480
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
Mod:    
dmattek committed
481
482
483
484
485
486
487
488
489
490

  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {

    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:    
dmattek committed
491
492
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:    
dmattek committed
493
494
495
496
497
    p.tmp = p.tmp +
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
498
  
dmattek's avatar
Added:    
dmattek committed
499
500
  if ('mean' %in% loc.stat)
    p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
501
502
503
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.y = mean,
dmattek's avatar
Added:    
dmattek committed
504
      colour = 'red',
dmattek's avatar
dmattek committed
505
506
507
508
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:    
dmattek committed
509
510
511
512
513
514
515
516
    )

  if ('CI' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
517
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
518
519
520
521
522
523
524
525
526
527
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
      colour = 'red',
dmattek's avatar
Mod:    
dmattek committed
528
      alpha = 0.25,
dmattek's avatar
Added:    
dmattek committed
529
530
531
532
533
534
535
      geom = "ribbon",
      group = 1
    )
  
  
  
  p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
536
537
538
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
539
540
541
542

  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
543
544
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
545
546
547
548
549
                                 aes_string(x = x.stim.arg[1],
                                            xend = x.stim.arg[2],
                                            y = y.stim.arg[1],
                                            yend = y.stim.arg[2],
                                            group = 'group'),
dmattek's avatar
dmattek committed
550
                                 colour = rhg_cols[[3]],
551
                                 size = stim.bar.width.arg) 
dmattek's avatar
dmattek committed
552
553
  }
  
dmattek's avatar
dmattek committed
554
555
556
  if (!is.null(ylim.arg)) 
    p.tmp = p.tmp + coord_cartesian(ylim = ylim.arg)
  
dmattek's avatar
dmattek committed
557
558
559
560
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
561
562
563
564
565
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
566
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
567
  
dmattek's avatar
Mod:    
dmattek committed
568
  return(p.tmp)
dmattek's avatar
dmattek committed
569
570
}

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Plot average time series with CI together in one facet
LOCplotTrajRibbon = function(dt.arg, # input data table
                          x.arg, # string with column name for x-axis
                          y.arg, # string with column name for y-axis
                          group.arg = NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                          col.arg = NULL, # colour pallette for individual time series
                          dt.stim.arg = NULL, # data table with stimulation pattern
                          x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                          y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
                          stim.bar.width.arg = 0.5,
                          ribbon.lohi.arg = c('Lower', 'Upper'),
                          ribbon.fill.arg = 'grey50',
                          ribbon.alpha.arg = 0.5,
                          xlab.arg = NULL,
                          ylab.arg = NULL,
                          plotlab.arg = NULL) {
  
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg)) +
    geom_ribbon(aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
                fill = ribbon.fill.arg,
                alpha = ribbon.alpha.arg) +
    geom_line(aes_string(y = y.arg, colour = group.arg))
  
dmattek's avatar
dmattek committed
594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes_string(x = x.stim.arg[1],
                                     xend = x.stim.arg[2],
                                     y = y.stim.arg[1],
                                     yend = y.stim.arg[2]),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }

  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
626
627
628
}


629

dmattek's avatar
dmattek committed
630
631
632
633
634
635
636
637
# Plots a scatter plot with marginal histograms
# Points are connected by a line (grouping by cellID)
#
# Assumes an input of data.table with
# x, y - columns with x and y coordinates
# id - a unique point identifier (here corresponds to cellID)
# mid - a (0,1) column by which points are coloured (here corresponds to whether cells are within bounds)

dmattek's avatar
dmattek committed
638
LOCggplotScat = function(dt.arg,
dmattek's avatar
dmattek committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
                        band.arg = NULL,
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
                        group.col.arg = NULL) {
  p.tmp = ggplot(dt.arg, aes(x = x, y = y))
  
  if (is.null(group.col.arg)) {
    p.tmp = p.tmp +
      geom_point(alpha = alpha.arg, aes(group = id))
  } else {
    p.tmp = p.tmp +
      geom_point(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      geom_path(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      scale_color_manual(name = group.col.arg, values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green'))
  }
  
  if (is.null(band.arg))
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
662
663
664
        # method = function(formula, data, weights = weight)
        #   rlm(formula, data, weights = weight, method = 'MM'),
        method = "lm",
dmattek's avatar
dmattek committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        fullrange = FALSE,
        level = 0.95,
        colour = 'blue'
      )
  else {
    p.tmp = p.tmp +
      geom_abline(slope = band.arg$a, intercept = band.arg$b) +
      geom_abline(
        slope = band.arg$a,
        intercept =  band.arg$b + abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      ) +
      geom_abline(
        slope = band.arg$a,
        intercept = band.arg$b - abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      )
  }
  
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  
  
  p.tmp = p.tmp +
707
708
709
710
711
    LOCggplotTheme(in.font.base = PLOTFONTBASE, 
                   in.font.axis.text = PLOTFONTAXISTEXT, 
                   in.font.axis.title = PLOTFONTAXISTITLE, 
                   in.font.strip = PLOTFONTFACETSTRIP, 
                   in.font.legend = PLOTFONTLEGEND) + 
712
713
    theme(legend.position = "none")

dmattek's avatar
dmattek committed
714
715
716
717
718
719
  # Marginal distributions don;t work with plotly...
  # if (is.null(facet.arg))
  #   ggExtra::ggMarginal(p.scat, type = "histogram",  bins = 100)
  # else
  return(p.tmp)
}
dmattek's avatar
dmattek committed
720

721

dmattek's avatar
dmattek committed
722
LOCplotHeatmap <- function(data.arg,
dmattek's avatar
Mod:    
dmattek committed
723
724
725
726
727
728
729
730
731
732
733
734
                          dend.arg,
                          palette.arg,
                          palette.rev.arg = TRUE,
                          dend.show.arg = TRUE,
                          key.show.arg = TRUE,
                          margin.x.arg = 5,
                          margin.y.arg = 20,
                          nacol.arg = 0.5,
                          colCol.arg = NULL,
                          labCol.arg = NULL,
                          font.row.arg = 1,
                          font.col.arg = 1,
735
                          breaks.arg = NULL,
dmattek's avatar
Mod:    
dmattek committed
736
737
                          title.arg = 'Clustering') {
  
738
739
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:    
dmattek committed
740
741
  if (palette.rev.arg)
    my_palette <-
742
    rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:    
dmattek committed
743
744
  else
    my_palette <-
745
    colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:    
dmattek committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
781
782
    main = title.arg,
    symbreaks = FALSE,
783
784
    symkey = FALSE,
    breaks = if (is.null(breaks.arg)) NULL else seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks+1)
dmattek's avatar
Mod:    
dmattek committed
785
786
787
788
  )
  
  return(loc.p)
}