server.R 27.4 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
dmattek's avatar
dmattek committed
10 11
library(shinyBS) # for tooltips
library(shinycssloaders) # for loader animations
dmattek's avatar
dmattek committed
12 13
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
15 16 17
library(plotly) # interactive plot
library(DT) # interactive tables

dmattek's avatar
dmattek committed
18
library(dendextend) # for color_branches
19
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
20 21
library(RColorBrewer)
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
22
library(ggthemes) # nice colour palettes
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23 24

library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
Added:  
dmattek committed
25 26
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
27 28 29 30
library(robust) # for robust linear regression
library(MASS)
library(pracma) # for trapz

dmattek's avatar
dmattek committed
31

32
# Global parameters ----
dmattek's avatar
dmattek committed
33
# change to increase the limit of the upload file size
dmattek's avatar
Added:  
dmattek committed
34
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
35

dmattek's avatar
dmattek committed
36 37 38
# colour of loader spinner (shinycssloaders)
options(spinner.color="#00A8AA")

dmattek's avatar
dmattek committed
39
# Server logic ----
dmattek's avatar
dmattek committed
40
shinyServer(function(input, output, session) {
41
  useShinyjs()
dmattek's avatar
dmattek committed
42
  
43
  # This is only set at session start
dmattek's avatar
dmattek committed
44
  # We use this as a way to determine which input was
45 46
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
47 48 49
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
50 51
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
52
  )
dmattek's avatar
dmattek committed
53 54 55 56 57 58 59 60 61

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
62
  
dmattek's avatar
dmattek committed
63
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
64
  
dmattek's avatar
dmattek committed
65
  # Generate random dataset
66
  dataGen1 <- eventReactive(input$inDataGen1, {
67
    if (DEB)
68
      cat("server:dataGen1\n")
69
    
dmattek's avatar
dmattek committed
70
    return(LOCgenTraj(in.nwells = 3, in.addout = 3))
71 72
  })
  
dmattek's avatar
dmattek committed
73
  # Load main data file
74
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
75
    if (DEB)
76
      cat("server:dataLoadNuc\n")
77

78 79 80 81 82 83 84
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
85
      return(fread(locFilePath, strip.white = T))
86 87 88
    }
  })
  
dmattek's avatar
dmattek committed
89 90 91 92
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
93

dmattek's avatar
dmattek committed
94
  # Load data with trajectories to remove
95
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
96
    if (DEB)
97
      cat(file = stdout(), "server:dataLoadTrajRem\n")
98
    
99 100 101 102 103 104 105 106 107 108
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
109
  
dmattek's avatar
dmattek committed
110
  # Load data with stimulation pattern
111
  dataLoadStim <- eventReactive(input$inButLoadStim, {
112
    if (DEB)
113
      cat(file = stdout(), "server:dataLoadStim\n")
114
    
115 116 117 118 119 120 121 122 123 124 125 126
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:  
dmattek committed
127 128
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
129
    if (DEB)
130
      cat(file = stdout(), 'server:uiFileLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
131 132 133 134
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
135
        'Select file and press "Load Data"',
dmattek's avatar
Added:  
dmattek committed
136 137 138 139 140
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
141
    if (DEB)
142
      cat(file = stdout(), 'server:uiButLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
143 144 145 146 147
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

148 149
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
150
    if (DEB)
151
      cat(file = stdout(), 'server:uiFileLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
152
    
153 154 155
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
156
        'Select file and press "Load Data"',
157 158 159 160 161
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
162
    if (DEB)
163
      cat(file = stdout(), 'server:uiButLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
164
    
165 166
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:  
dmattek committed
167 168
  })
  
169

dmattek's avatar
dmattek committed
170
  
dmattek's avatar
dmattek committed
171
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
172
  output$varSelTrackLabel = renderUI({
173
    if (DEB)
174
      cat(file = stdout(), 'server:varSelTrackLabel\n')
175
    
dmattek's avatar
dmattek committed
176
    locCols = getDataNucCols()
177
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
178 179 180
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
181
      'Track ID column:',
dmattek's avatar
dmattek committed
182 183 184 185 186 187 188
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
189
    if (DEB)
190
      cat(file = stdout(), 'server:varSelTime\n')
191
    
dmattek's avatar
dmattek committed
192
    locCols = getDataNucCols()
193
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
194 195 196
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
197
      'Time column:',
dmattek's avatar
dmattek committed
198 199 200 201 202
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
203 204

  output$varSelTimeFreq = renderUI({
205
    if (DEB)
206
      cat(file = stdout(), 'server:varSelTimeFreq\n')
207
    
208 209 210
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
dmattek's avatar
dmattek committed
211
        'Interval between two time points:',
212 213 214 215 216 217
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
218
  })
dmattek's avatar
dmattek committed
219
  
dmattek's avatar
dmattek committed
220
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
221
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
222 223
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
224
  output$varSelGroup = renderUI({
225
    if (DEB)
226
      cat(file = stdout(), 'server:varSelGroup\n')
dmattek's avatar
dmattek committed
227
    
dmattek's avatar
dmattek committed
228 229 230 231 232
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
233
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
234 235

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
236 237
        selectInput(
          'inSelGroup',
dmattek's avatar
dmattek committed
238
          'Select:',
dmattek's avatar
dmattek committed
239 240 241 242 243
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
244 245 246 247
      }
    }
  })
  
248 249
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
250
  output$varSelSite = renderUI({
251
    if (DEB)
252
      cat(file = stdout(), 'server:varSelSite\n')
dmattek's avatar
dmattek committed
253
    
254
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
255
      locCols = getDataNucCols()
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
256
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov|(G|g)roup', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
257 258 259
      
      selectInput(
        'inSelSite',
dmattek's avatar
dmattek committed
260
        'Columns to add to track ID:',
dmattek's avatar
Added:  
dmattek committed
261 262
        locCols,
        width = '100%',
263 264
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:  
dmattek committed
265 266
      )
    }
dmattek's avatar
dmattek committed
267 268 269 270
  })
  
  
  output$varSelMeas1 = renderUI({
271
    if (DEB)
272
      cat(file = stdout(), 'server:varSelMeas1\n')
dmattek's avatar
dmattek committed
273 274 275
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
276
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
277

dmattek's avatar
dmattek committed
278 279
      selectInput(
        'inSelMeas1',
dmattek's avatar
dmattek committed
280
        'Column with 1st measurement:',
dmattek's avatar
dmattek committed
281 282 283 284 285 286 287 288 289
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
290
    if (DEB)
291
      cat(file = stdout(), 'server:varSelMeas2\n')
292
    
dmattek's avatar
dmattek committed
293 294 295 296
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
297
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
298

dmattek's avatar
dmattek committed
299 300
      selectInput(
        'inSelMeas2',
dmattek's avatar
dmattek committed
301
        'Column with 2nd measurement',
dmattek's avatar
dmattek committed
302 303 304 305 306 307 308
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
309
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
310
  output$uiSlTimeTrim = renderUI({
311
    if (DEB)
312
      cat(file = stdout(), 'server:uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
334
  
dmattek's avatar
dmattek committed
335
  # UI-side-panel-normalization ----
336 337 338 339
  
  # select normalisation method
  # - fold-change calculates fold change with respect to the mean
  # - z-score calculates z-score of the selected regione of the time series
dmattek's avatar
dmattek committed
340
  output$uiChBnorm = renderUI({
341
    if (DEB)
342
      cat(file = stdout(), 'server:uiChBnorm\n')
dmattek's avatar
dmattek committed
343 344
    
    if (input$chBnorm) {
345
      tagList(
dmattek's avatar
dmattek committed
346 347 348
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
349 350 351
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score'),
        width = "40%"
      ),
dmattek's avatar
dmattek committed
352
      bsTooltip('rBnormMeth', helpText.server[12], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
353 354 355 356
      )
    }
  })
  
357
  # select the region of the time series for normalisation
dmattek's avatar
dmattek committed
358
  output$uiSlNorm = renderUI({
359
    if (DEB)
360
      cat(file = stdout(), 'server:uiSlNorm\n')
dmattek's avatar
dmattek committed
361 362 363 364 365 366 367 368 369 370
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
371
      tagList(
dmattek's avatar
dmattek committed
372 373
      sliderInput(
        'slNormRtMinMax',
374
        label = 'Time span',
dmattek's avatar
dmattek committed
375 376
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
377 378
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
379
      ),
dmattek's avatar
dmattek committed
380
      bsTooltip('slNormRtMinMax', helpText.server[13], placement = "top", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
381 382 383 384
      )
    }
  })
  
385
  # use robust stats (median instead of mean, mad instead of sd)
dmattek's avatar
dmattek committed
386
  output$uiChBnormRobust = renderUI({
387
    if (DEB)
388
      cat(file = stdout(), 'server:uiChBnormRobust\n')
dmattek's avatar
dmattek committed
389 390
    
    if (input$chBnorm) {
391
      tagList(
dmattek's avatar
dmattek committed
392 393
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
394 395
                    FALSE, 
                    width = "40%"),
dmattek's avatar
dmattek committed
396
      bsTooltip('chBnormRobust', helpText.server[14], placement = "top", trigger = "hover", options = NULL)
397
      )
dmattek's avatar
dmattek committed
398 399 400
    }
  })
  
401
  # choose whether normalisation should be calculated for the entire dataset, group, or trajectory
dmattek's avatar
dmattek committed
402
  output$uiChBnormGroup = renderUI({
403
    if (DEB)
404
      cat(file = stdout(), 'server:uiChBnormGroup\n')
dmattek's avatar
dmattek committed
405 406
    
    if (input$chBnorm) {
407
      tagList(
dmattek's avatar
dmattek committed
408
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
409
                   label = 'Normalisation grouping',
410 411
                   choices = list('Entire dataset' = 'none', 'Per group' = 'group', 'Per trajectory' = 'id'), 
                   width = "40%"),
dmattek's avatar
dmattek committed
412
      bsTooltip('chBnormGroup', helpText.server[15], placement = "top", trigger = "hover", options = NULL)
413
      )
dmattek's avatar
dmattek committed
414 415 416 417
    }
  })
  
  
dmattek's avatar
dmattek committed
418
  
dmattek's avatar
dmattek committed
419

dmattek's avatar
dmattek committed
420
  # Processing-data ----
dmattek's avatar
dmattek committed
421
  
422 423 424 425 426 427 428 429 430 431 432 433
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
434
    # Don't wrap around if(DEB) !!!
435
    cat(
436
      "server:dataInBoth\n   inGen1: ",
437
      locInGen1,
438
      "      prev=",
439
      isolate(counter$dataGen1),
440
      "\n   inDataNuc: ",
441 442 443 444 445 446 447 448 449 450
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
451
    # isolate the checks of the counter reactiveValues
452 453
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
454
      cat("server:dataInBoth if inDataGen1\n")
455 456 457 458
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
459
      cat("server:dataInBoth if inDataLoadNuc\n")
460
      dm = dataLoadNuc()
461 462 463 464 465 466 467 468 469 470 471 472 473
      
      # convert to long format if radio box set to "wide"
      # the input data in long format should contain:
      # - the first row with a header: ID, 1, 2, 3...
      # - consecutive rows with time series, where columns are time points
      if (input$inRbutLongWide == 1) {
        # long to wide
        dm = melt(dm, id.vars = names(dm)[1], variable.name = COLRT, value.name = COLY)

        # convert column names with time points to a number
        dm[, (COLRT) := as.numeric(levels(get(COLRT)))[get(COLRT)]]
      }
      
474 475 476
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
477
      cat("server:dataInBoth else\n")
478 479 480 481 482 483
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
484
  getDataNucCols <- reactive({
485
    if (DEB)
486
      cat(file = stdout(), 'server:getDataNucCols: in\n')
487
    
488 489 490 491 492 493 494 495 496 497
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
498
    if (DEB)
499
      cat(file = stdout(), 'server:dataMod\n')
500
    
501 502
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
503
    if (is.null(loc.dt))
504 505
      return(NULL)
    
506
    if (input$chBtrackUni) {
507
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
508
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:  
dmattek committed
509
    } else {
510
      # stay with track ID provided in the loaded dataset; has to be unique
511
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
512 513
    }
    
dmattek's avatar
dmattek committed
514
    
dmattek's avatar
Added:  
dmattek committed
515 516
    # remove trajectories based on uploaded csv
    if (input$chBtrajRem) {
517
      if (DEB)
518
        cat(file = stdout(), 'server:dataMod: trajRem not NULL\n')
dmattek's avatar
Added:  
dmattek committed
519 520
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
521
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
522 523
    }
    
dmattek's avatar
dmattek committed
524 525 526
    # check if NAs present
    
    
527 528 529
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
530 531 532
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
533
    if (DEB)
534
      cat(file = stdout(), 'server:getDataTrackObjLabUni\n')
535
    
dmattek's avatar
dmattek committed
536
    loc.dt = dataMod()
537
    
dmattek's avatar
dmattek committed
538 539 540 541
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
542 543
  })
  
dmattek's avatar
Mod:  
dmattek committed
544
  
dmattek's avatar
dmattek committed
545 546 547
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
548
  getDataTpts <- reactive({
549
    if (DEB)
550
      cat(file = stdout(), 'server:getDataTpts\n')
551
    
dmattek's avatar
dmattek committed
552
    loc.dt = dataMod()
553
    
dmattek's avatar
dmattek committed
554 555 556 557
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
558 559
  })
  
dmattek's avatar
dmattek committed
560
  
561 562 563
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
564
  #    realtime - selected from input
dmattek's avatar
dmattek committed
565
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
566
  #               (can be a single column or result of an operation on two cols)
567 568
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
569 570
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
571 572 573 574
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
575
  data4trajPlot <- reactive({
576
    if (DEB)
577
      cat(file = stdout(), 'server:data4trajPlot\n')
578 579
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
580
    if (is.null(loc.dt))
581 582
      return(NULL)
    
583
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
584
    if (input$inSelMath == '')
585 586 587 588 589 590
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
591
    # create expression for 'group' column
592 593
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
594 595 596 597 598 599 600 601 602 603 604
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
605
    
dmattek's avatar
dmattek committed
606 607

    # column name with time
608 609
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
610 611
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
612
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
613
    
dmattek's avatar
Added:  
dmattek committed
614 615
    
    # Find column names with position
616
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
617
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
618
    
619
    if (DEB)
620
      cat('server:data4trajPlot:\n   Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
621 622
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
623 624 625 626
      locPos = TRUE
    else
      locPos = FALSE
    
627 628 629 630
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
631 632 633 634 635 636
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
637
      loc.s.objnum = loc.s.objnum[1]
638
      locObjNum = TRUE
dmattek's avatar
dmattek committed
639
    }
640 641
    
    
642 643
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
dmattek's avatar
dmattek committed
644
    if (sum(names(loc.dt) %in% COLIN) > 0)
645 646 647 648 649 650
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
dmattek's avatar
dmattek committed
651 652 653 654
    s.colexpr = paste0('.(',  COLY, ' = ', loc.s.y,
                       ', ', COLID, ' = ', COLIDUNI, 
                       ', ', COLGR, ' = ', loc.s.gr,
                       ', ', COLRT, ' = ', loc.s.rt)
655 656
    
    # account for the presence of 'mid.in' column in uploaded data
dmattek's avatar
dmattek committed
657
    # future: choose this column in UI
658 659
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
660
                         ',', COLIN, ' = ', COLIN)
661 662 663 664
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
665 666
                         ', ', COLPOSX, '= ', loc.s.pos.x,
                         ', ', COLPOSY, '= ', loc.s.pos.y)
667 668 669 670
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
671
                         ', ', COLOBJN, ' = ', loc.s.objnum)
672 673 674 675 676 677 678
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
679 680 681 682 683
    # Convert track ID to a factor.
    # This is necessary for, e.g. merging data with cluster assignments.
    # If input dataset has track ID as a number, such a merge would fail.
    loc.out[, (COLID) := as.factor(get(COLID))]
    
684 685 686 687 688 689
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
dmattek's avatar
dmattek committed
690
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', get(COLIN))]
691
      else
dmattek's avatar
Mod:  
dmattek committed
692
        # add a column with status of track selection
dmattek's avatar
dmattek committed
693
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
694
    }
695
      
dmattek's avatar
dmattek committed
696

697
    ## Interpolate missing data and NA data points
698
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
699
    # Tracks are interpolated only within first and last time points of every track id
700 701
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
702
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
703
    
dmattek's avatar
dmattek committed
704 705 706 707 708 709 710 711 712
    # check if NA's present
    if (sum(is.na(loc.out[[COLY]])))
      createAlert(session, "alertAnchorSidePanelNAsPresent", "alertNAsPresent", title = "Warning",
                  content = helpText.server[["alertNAsPresent"]], 
                  append = FALSE,
                  style = "warning")
    else
      closeAlert(session, "alertNAsPresent")
    
713
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
714

715 716
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
dmattek's avatar
dmattek committed
717
      loc.out = loc.out[setkeyv(loc.out[, .(seq(min(get(COLRT), na.rm = T), max(get(COLRT), na.rm = T), input$inSelTimeFreq)), by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
718 719
      
      # x-check: print all rows with NA's
720
      if (DEB) {
721
        cat(file = stdout(), 'server:data4trajPlot: Rows with NAs:\n')
722 723
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
724 725 726 727
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
728
        s.cols = c(COLY, COLPOSX, COLPOSY)
729
      else
dmattek's avatar
dmattek committed
730
        s.cols = c(COLY)
731
      
732 733 734 735 736 737 738 739
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

dmattek's avatar
dmattek committed
740
        loc.out[, (col) := na_interpolation(get(col)), by = c(COLID)]        
741 742 743
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
744 745 746 747 748 749 750 751 752 753 754 755 756 757
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
758
    
759
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
760
    if(input$chBtimeTrim) {
dmattek's avatar
dmattek committed
761
      loc.out = loc.out[get(COLRT) >= input$slTimeTrim[[1]] & get(COLRT) <= input$slTimeTrim[[2]] ]
dmattek's avatar
dmattek committed
762
    }
dmattek's avatar
dmattek committed
763
    
764
    ## Normalization
dmattek's avatar
dmattek committed
765
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
766
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
767
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
768
        in.dt = loc.out,
dmattek's avatar
dmattek committed
769 770
        in.meas.col = COLY,
        in.rt.col = COLRT,
dmattek's avatar
dmattek committed
771 772 773 774 775 776 777
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
778 779
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
780 781
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
782
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
783 784 785
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
786 787
  })
  
dmattek's avatar
dmattek committed
788 789
  
  # prepare data for clustering
dmattek's avatar
dmattek committed
790
  # convert from long to wide; return a matrix with:
dmattek's avatar
dmattek committed
791 792 793
  # cells as columns
  # time points as rows
  data4clust <- reactive({
794
    if (DEB)  
795
      cat(file = stdout(), 'server:data4clust\n')
dmattek's avatar
dmattek committed
796
    
dmattek's avatar
dmattek committed
797
    loc.dt = data4trajPlotNoOut()
dmattek's avatar
dmattek committed
798 799 800
    if (is.null(loc.dt))
      return(NULL)
    
801 802 803 804
    # convert from long to wide format
    loc.dt.wide = dcast(loc.dt, 
                    reformulate(response = COLID, termlabels = COLRT), 
                    value.var = COLY)
dmattek's avatar
dmattek committed
805
    
806 807
    # store row names for later
    loc.rownames = loc.dt.wide[[COLID]]
dmattek's avatar
Mod:  
dmattek committed
808
    
809 810
    # omit first column that contains row names
    loc.m.out = as.matrix(loc.dt.wide[, -1])
dmattek's avatar
Added:  
dmattek committed
811
    
812 813
    # assign row names to the matrix
    rownames(loc.m.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
814
    
815
    return(loc.m.out)
dmattek's avatar
Mod:  
dmattek committed
816
  }) 
dmattek's avatar
dmattek committed
817
  
dmattek's avatar
dmattek committed
818
  
819 820 821
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
822
    if (DEB)  
823
      cat(file = stdout(), 'server:data4stimPlot\n')
824 825
    
    if (input$chBstim) {
826
      if (DEB)  
827
        cat(file = stdout(), 'server:data4stimPlot: stim not NULL\n')
828 829 830 831
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
832
      if (DEB)  
833
        cat(file = stdout(), 'server:data4stimPlot: stim is NULL\n')
834
      
835 836 837 838
      return(NULL)
    }
  })
  
dmattek's avatar
dmattek committed
839 840 841 842 843 844 845 846 847 848
  # prepare y-axis label in time series plots, depending on UI setting
  
  createYaxisLabel = reactive({
    locLabel = input$inSelMeas1
    
    
    
    return(locLabel)
  })
  
dmattek's avatar
Added:  
dmattek committed
849 850 851
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
dmattek's avatar
dmattek committed
852
    filename = FCSVTCCLEAN,
dmattek's avatar
Added:  
dmattek committed
853
    content = function(file) {
dmattek's avatar
dmattek committed
854
      write.csv(data4trajPlotNoOut(), file, row.names = FALSE)
dmattek's avatar
Added:  
dmattek committed
855 856 857
    }
  )
  
dmattek's avatar
dmattek committed
858 859 860
  # Plotting-trajectories ----

  # UI for selecting trajectories
861
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
862
  output$varSelHighlight = renderUI({
863
    if (DEB)  
864
      cat(file = stdout(), 'server:varSelHighlight\n')
dmattek's avatar
dmattek committed
865
    
dmattek's avatar
dmattek committed
866 867 868
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
869
    
dmattek's avatar
dmattek committed
870
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
871
    if (!is.null(loc.v)) {
872
      selectInput(
dmattek's avatar
dmattek committed
873
        'inSelHighlight',
874
        'Select one or more trajectories:',
dmattek's avatar
dmattek committed
875
        loc.v,
876
        width = '100%',
dmattek's avatar
dmattek committed
877
        multiple = TRUE
878
      )
dmattek's avatar
dmattek committed
879 880 881
    }
  })
  
dmattek's avatar
dmattek committed
882 883 884
  # Taking out outliers 
  data4trajPlotNoOut = callModule(modSelOutliers, 'returnOutlierIDs', data4trajPlot)
  
dmattek's avatar
dmattek committed
885 886
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
dmattek's avatar
dmattek committed
887
             in.data = data4trajPlotNoOut,
dmattek's avatar
dmattek committed
888
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
889
             in.fname = function() return(FPDFTCMEAN))
dmattek's avatar
dmattek committed
890
  
dmattek's avatar
dmattek committed
891
  # Trajectory plotting - individual
dmattek's avatar
dmattek committed
892
  callModule(modTrajPlot, 'modTrajPlot', 
dmattek's avatar
dmattek committed
893
             in.data = data4trajPlotNoOut, 
dmattek's avatar
dmattek committed
894
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
895 896
             in.fname = function() {return(FPDFTCSINGLE)},
             in.ylab = createYaxisLabel)
dmattek's avatar
dmattek committed
897
  
898 899 900 901 902
  # Trajectory plotting - PSD
  callModule(modPSDPlot, 'modPSDPlot',
             in.data = data4trajPlotNoOut,
             in.fname = function() {return(FPDFTCPSD)})
  
dmattek's avatar
dmattek committed
903 904
  
  # Tabs ----
905
  ###### AUC calculation and plotting
dmattek's avatar
dmattek committed
906
  callModule(tabAUCplot, 'tabAUC', data4trajPlotNoOut, in.fname = function() return(FPDFBOXAUC))
dmattek's avatar
Added:  
dmattek committed
907
  
dmattek's avatar
Added:  
dmattek committed
908
  ###### Box-plot
dmattek's avatar
dmattek committed
909
  callModule(tabDistPlot, 'tabDistPlot', data4trajPlotNoOut, in.fname = function() return(FPDFBOXTP))
dmattek's avatar
dmattek committed
910
  
dmattek's avatar
dmattek committed
911
  ###### Scatter plot
dmattek's avatar
dmattek committed
912
  callModule(tabScatterPlot, 'tabScatter', data4trajPlotNoOut, in.fname = function() return(FPDFSCATTER))
dmattek's avatar
dmattek committed
913
  
dmattek's avatar
dmattek committed
914
  ##### Hierarchical clustering
dmattek's avatar
dmattek committed
915
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
916 917
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
dmattek committed
918
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
919
})