server.R 40 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
18
19
20
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
21

22
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
23
options(shiny.maxRequestSize = 80 * 1024 ^ 2)
dmattek's avatar
dmattek committed
24

dmattek's avatar
dmattek committed
25
shinyServer(function(input, output, session) {
26
  useShinyjs()
dmattek's avatar
dmattek committed
27
  
28
29
30
31
32
33
34
35
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
    dataLoadNuc  = isolate(input$inButLoadNuc)
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
36
37
  )
  
dmattek's avatar
dmattek committed
38
39
40
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
41
  # FILE LOAD
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
69
70
71
72
73
74
75
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
dmattek committed
76
77
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'rack'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTrackLabel',
      'Select Track Label (e.g. objNuc_Track_ObjectsLabel):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'RealTime'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
      'Select time column (e.g. RealTime):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
      locColSel = locCols[locCols %like% 'ite']
      if (length(locColSel) == 0)
        locColSel = locCols[locCols %like% 'eries'][1] # index 1 at the end in case more matches; select 1st
      else if (length(locColSel) > 1) {
        locColSel = locColSel[1]
      }
      #    cat('UI varSelGroup::locColSel ', locColSel, '\n')
      selectInput(
        'inSelGroup',
        'Select one or more facet groupings (e.g. Site, Well, Channel):',
        locCols,
        width = '100%',
        selected = locColSel,
        multiple = TRUE
      )
    }
    
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'ite'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelSite',
      'Select FOV (e.g. Metadata_Site or Metadata_Series):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
dmattek's avatar
dmattek committed
159
160
      locColSel = locCols[locCols %like% 'objCyto_Intensity_MeanIntensity_imErkCor.*' |
                            locCols %like% 'Ratio'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
      #    cat(locColSel, '\n')
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
      locColSel = locCols[locCols %like% 'objNuc_Intensity_MeanIntensity_imErkCor.*'][1] # index 1 at the end in case more matches; select 1st
      #    cat(locColSel, '\n')
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
215
  
dmattek's avatar
dmattek committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
247
248
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
                  label = 'Normalisation grouping',
                  choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
    }
  })
  
  
dmattek's avatar
dmattek committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  # UI for removing outliers
  
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {

      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
        value = 99, 
        step = 0.1
      )
dmattek's avatar
dmattek committed
289
290
      

dmattek's avatar
dmattek committed
291
292
293
    }
  })
  
dmattek's avatar
dmattek committed
294
295
296
297
298
299
300
301
302
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
303
  
dmattek's avatar
dmattek committed
304
305
306
307
308
309
310
311
312
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
362
  getDataNucCols <- reactive({
363
364
365
366
367
368
369
370
371
372
373
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
374
    cat(file = stderr(), 'dataMod\n')
375
376
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
377
    if (is.null(loc.dt))
378
379
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
380
381
382
383
384
385
386
387
388
389
390
391
    loc.types = lapply(loc.dt, class)
    if(loc.types[[input$inSelTrackLabel]] == 'numeric')
    {
      loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                             sprintf("%04d", get(input$inSelTrackLabel)),
                                             sep = "_")]
    } else {
      loc.dt[, trackObjectsLabelUni := paste(sprintf("%03s", get(input$inSelSite)),
                                             sprintf("%s", get(input$inSelTrackLabel)),
                                             sep = "_")]
    }
    
dmattek's avatar
dmattek committed
392
    
393
394
395
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
396
397
398
399
400
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
401
    
dmattek's avatar
dmattek committed
402
403
404
405
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
406
407
  })
  
dmattek's avatar
dmattek committed
408
  # return all unique track object labels (created in dataMod)
dmattek's avatar
dmattek committed
409
  # This will be used to display in UI for trajectory highlighting
dmattek's avatar
dmattek committed
410
411
412
413
414
415
416
417
418
419
420
421
422
  getDataTrackObjLabUni_afterTrim <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni_afterTrim\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$id))
  })

  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
423
424
425
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
426
    
dmattek's avatar
dmattek committed
427
428
429
430
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
431
432
  })
  
dmattek's avatar
dmattek committed
433
434
435
436
437
438
439
440
441
442
443
444
445
  # return dt with cell IDs and their corresponding condition name
  # The condition is the column defined by facet groupings
  getDataCond <- reactive({
    cat(file = stderr(), 'getDataCond\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[, .(id, group)]))
    
  })
  
446
447
448
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
449
  #    realtime - selected from input
dmattek's avatar
dmattek committed
450
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
451
452
453
454
455
  #               (can be a single column or result of an operation on two cols)
  #    id       - trackObjectsLabelUni (created in dataMod)
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
  #               highlight status from UI
456
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
457
    cat(file = stderr(), 'data4trajPlot\n')
458
459
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
460
    if (is.null(loc.dt))
461
462
463
      return(NULL)
    
    
dmattek's avatar
dmattek committed
464
    if (input$inSelMath == '')
465
466
467
468
469
470
471
472
473
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
    # create expression for parsing
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
474
475
476
477
    if(length(input$inSelGroup) == 0)
      return(NULL)
    loc.s.gr = sprintf("paste(%s, sep=';')",
                       paste(input$inSelGroup, sep = '', collapse = ','))
478
479
480
    
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
481
482
483
484
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
    locBut = input$chBhighlightTraj
    
485
486
487
488
489
490
491
492
493
494
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
    if (sum(names(loc.dt) %in% 'mid.in') > 0) {
      loc.out = loc.dt[, .(
        y = eval(parse(text = loc.s.y)),
        id = trackObjectsLabelUni,
        group = eval(parse(text = loc.s.gr)),
        realtime = eval(parse(text = loc.s.rt)),
        mid.in = mid.in
      )]
dmattek's avatar
dmattek committed
495
496
497
498
499
500
501
      
      # add 3rd level with status of track selection
      # to a column with trajectory filtering status
      if (locBut) {
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      }
      
502
503
504
505
506
507
508
    } else {
      loc.out = loc.dt[, .(
        y = eval(parse(text = loc.s.y)),
        id = trackObjectsLabelUni,
        group = eval(parse(text = loc.s.gr)),
        realtime = eval(parse(text = loc.s.rt))
      )]
dmattek's avatar
dmattek committed
509
510
511
512
513
      
      # add a column with status of track selection
      if (locBut) {
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
      }
514
    }
515
    
dmattek's avatar
dmattek committed
516
517
518
519
520
521
522
    # remove NAs
    loc.out = loc.out[complete.cases(loc.out)]

    # Trim x-axis (time)
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
523
524
    
    # Normalization
dmattek's avatar
dmattek committed
525
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
526
527
528
529
530
531
532
533
534
535
536
537
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
538
539
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
540
541
542
543
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
544
545
546
547
548
549
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')

    return(loc.out)
dmattek's avatar
dmattek committed
569
570
  })
  
dmattek's avatar
dmattek committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
    loc.rownames = loc.out$id
    

    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
    return(loc.out)
  })
  
  # prepare data for plotting timecourses facetted per cluster
  # uses the same dt as for trajectory plotting
  # returns dt with these columns:
  data4hierSparTrajPlot <- reactive({
    cat(file = stderr(), 'data4hierSparTrajPlot\n')
dmattek's avatar
dmattek committed
598
    
dmattek's avatar
dmattek committed
599
    loc.dt = data4trajPlot()
dmattek's avatar
dmattek committed
600
    if (is.null(loc.dt))
dmattek's avatar
dmattek committed
601
      return(NULL)
dmattek's avatar
dmattek committed
602
    
dmattek's avatar
dmattek committed
603
    loc.out = loc.dt[realtime %in% input$inSelTpts]
dmattek's avatar
dmattek committed
604
605
  })
  
dmattek's avatar
dmattek committed
606
607
  
  # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
dmattek committed
608
609
610
611
  getDataCl = function(in.dend, in.k, in.ids) {
    cat(file = stderr(), 'getDataCl \n')
    cat(in.k, '\n')
    loc.dt.cl = data.table(id = in.ids,
dmattek's avatar
dmattek committed
612
613
614
615
                           cl = cutree(as.dendrogram(in.dend), k = in.k))
  }
  

dmattek's avatar
dmattek committed
616
617
618
619
620
621
622
623
624
  getDataHierClReact = reactive({
    cat(file = stderr(), 'getDataHierClReact \n')
    cat(input$inPlotHierNclust, '\n')
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(userFitDendHier(), k = input$inPlotHierNclust))
    
    loc.dt.cl = merge(loc.dt.cl, getDataCond(), by = 'id')
  })
  
dmattek's avatar
dmattek committed
625
626
  ####
  ## UI for trajectory plot
dmattek's avatar
dmattek committed
627
  
dmattek's avatar
dmattek committed
628
629
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
630
    
dmattek's avatar
dmattek committed
631
632
633
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
634
    
dmattek's avatar
dmattek committed
635
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
636
    if (!is.null(loc.v)) {
637
      selectInput(
dmattek's avatar
dmattek committed
638
639
640
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
641
        width = '100%',
dmattek's avatar
dmattek committed
642
        multiple = TRUE
643
      )
dmattek's avatar
dmattek committed
644
645
646
    }
  })
  
dmattek's avatar
dmattek committed
647
  output$uiPlotTraj = renderUI({
dmattek's avatar
dmattek committed
648
    plotlyOutput(
dmattek's avatar
dmattek committed
649
      "plotTrajPlotly",
dmattek's avatar
dmattek committed
650
651
652
      width = paste0(input$inPlotTrajWidth, '%'),
      height = paste0(input$inPlotTrajHeight, 'px')
    )
dmattek's avatar
dmattek committed
653
654
  })
  
dmattek's avatar
dmattek committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
  output$plotTrajPlotly <- renderPlotly({
    # This is required to avoid
    # "Warning: Error in <Anonymous>: cannot open file 'Rplots.pdf'"
    # When running on a server. Based on:
    # https://github.com/ropensci/plotly/issues/494
    if (names(dev.cur()) != "null device")
      dev.off()
    pdf(NULL)
    
    loc.p = plotTraj()
    if(is.null(loc.p))
      return(NULL)
    
    return(plotly_build(loc.p))
  })
  
  # Trajectory plot - download pdf
dmattek's avatar
dmattek committed
672
  callModule(downPlot, "downPlotTraj", 'tcourses.pdf', plotTraj, TRUE)
dmattek's avatar
dmattek committed
673
674
  
  plotTraj <- function() {
dmattek's avatar
dmattek committed
675
    cat(file = stderr(), 'plotTraj: in\n')
dmattek's avatar
dmattek committed
676
    locBut = input$butPlotTraj
dmattek's avatar
dmattek committed
677
678
    
    if (locBut == 0) {
dmattek's avatar
dmattek committed
679
      cat(file = stderr(), 'plotTraj: Go button not pressed\n')
dmattek's avatar
dmattek committed
680
681
682
683
      
      return(NULL)
    }
    
684
    loc.dt = isolate(data4trajPlot())
dmattek's avatar
dmattek committed
685
    
dmattek's avatar
dmattek committed
686
    cat("plotTraj: on to plot\n\n")
687
    if (is.null(loc.dt)) {
dmattek's avatar
dmattek committed
688
      cat(file = stderr(), 'plotTraj: dt is NULL\n')
dmattek's avatar
dmattek committed
689
      return(NULL)
dmattek's avatar
dmattek committed
690
691
    }
    
dmattek's avatar
dmattek committed
692
    cat(file = stderr(), 'plotTraj: dt not NULL\n')
dmattek's avatar
dmattek committed
693
    
dmattek's avatar
dmattek committed
694

dmattek's avatar
dmattek committed
695
    # Future: change such that a column with colouring status is chosen by the user
696
697
    # colour trajectories, if dataset contains mi.din column
    # with filtering status of trajectory
dmattek's avatar
dmattek committed
698
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
699
700
701
      loc.line.col.arg = 'mid.in'
    else
      loc.line.col.arg = NULL
dmattek's avatar
dmattek committed
702
703
    
    p.out = myGgplotTraj(
704
705
706
707
708
709
      dt.arg = loc.dt,
      x.arg = 'realtime',
      y.arg = 'y',
      group.arg = "id",
      facet.arg = 'group',
      facet.ncol.arg = input$inPlotTrajFacetNcol,
710
711
      xlab.arg = 'Time (min)',
      line.col.arg = loc.line.col.arg
dmattek's avatar
dmattek committed
712
    )
dmattek's avatar
dmattek committed
713
    
dmattek's avatar
dmattek committed
714
715
716
    return(p.out)
  }
  
dmattek's avatar
dmattek committed
717
  
dmattek's avatar
Added:    
dmattek committed
718
719
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
720
  
dmattek's avatar
dmattek committed
721
722
  
  
dmattek's avatar
dmattek committed
723
724
725
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
  ##### Hierarchical clustering
  
  output$uiPlotHierClSel = renderUI({
    if(input$chBPlotHierClSel) {
      selectInput('inPlotHierClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  
  userFitDendHier <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    cl.dist = dist(dm.t, method = s.cl.diss[as.numeric(input$selectPlotHierDiss)])
    cl.hc = hclust(cl.dist, method = s.cl.linkage[as.numeric(input$selectPlotHierLinkage)])
    cl.lev = rev(row.names(dm.t))
    
    dend <- as.dendrogram(cl.hc)
    dend <- color_branches(dend, k = input$inPlotHierNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHier <- function() {
    
    loc.dm = data4clust()
    if (is.null(loc.dm))
      return(NULL)
    
    loc.dend <- userFitDendHier()
    if (is.null(loc.dend))
      return(NULL)
    
    if (input$inPlotHierRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(loc.dend)
    col_labels <- col_labels[order(order.dendrogram(loc.dend))]
    
    if (input$selectPlotHierDend) {
      assign("var.tmp.1", loc.dend)
      var.tmp.2 = "row"
    } else {
      assign("var.tmp.1", FALSE)
      var.tmp.2 = "none"
    }
    
    loc.p = heatmap.2(
      loc.dm,
      Colv = "NA",
      Rowv = var.tmp.1,
      srtCol = 90,
      dendrogram = var.tmp.2,
      trace = "none",
      key = input$selectPlotHierKey,
      margins = c(input$inPlotHierMarginX, input$inPlotHierMarginY),
      col = my_palette,
      na.col = grey(input$inPlotHierNAcolor),
      denscol = "black",
      density.info = "density",
      RowSideColors = col_labels,
      colRow = col_labels,
#      sepcolor = grey(input$inPlotHierGridColor),
#      colsep = 1:ncol(loc.dm),
#      rowsep = 1:nrow(loc.dm),
      cexRow = input$inPlotHierFontX,
      cexCol = input$inPlotHierFontY,
      main = paste(
        "Distance measure: ",
        s.cl.diss[as.numeric(input$selectPlotHierDiss)],
        "\nLinkage method: ",
        s.cl.linkage[as.numeric(input$selectPlotHierLinkage)]
      )
    )
    
    return(loc.p)
  }
  
  
  plotHierTraj <- function(){
    cat(file = stderr(), 'plotHierTraj: in\n')
    
    loc.dt = isolate(data4trajPlot())
    
    cat("plotHierTraj: on to plot\n\n")
    if (is.null(loc.dt)) {
      cat(file = stderr(), 'plotHierTraj: dt is NULL\n')
      return(NULL)
    }
    
    cat(file = stderr(), 'plotHierTraj: dt not NULL\n')
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
dmattek committed
831
    loc.dt.cl = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # display only selected clusters
    if(isolate(input$chBPlotHierClSel))
      loc.dt = loc.dt[cl %in% isolate(input$inPlotHierClSel)]
    
    # Future: change such that a column with colouring status is chosen by the user
    # colour trajectories, if dataset contains mi.din column
    # with filtering status of trajectory
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      loc.line.col.arg = 'mid.in'
    else
      loc.line.col.arg = NULL
    
    p.out = myGgplotTraj(
      dt.arg = loc.dt,
      x.arg = 'realtime',
      y.arg = 'y',
      group.arg = "id",
      facet.arg = 'cl',
      facet.ncol.arg = input$inPlotTrajFacetNcol,
      xlab.arg = 'Time (min)',
      line.col.arg = loc.line.col.arg
    )
    
    return(p.out)
  }
  
  
dmattek's avatar
dmattek committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
  # download a list of cellIDs with cluster assihnments
  output$downCellCl <- downloadHandler(
    filename = function() {
      paste0('clust_hierch_data_',
             s.cl.diss[as.numeric(input$selectPlotHierDiss)],
             '_',
             s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  output$downCellClSpar <- downloadHandler(
    filename = function() {
      paste0('clust_hierchSpar_data_',
             s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
             '_',
             s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  
    # callModule(downCellCl, 'downDataHier', paste0('clust_hierch_data_',
    #                                               s.cl.diss[as.numeric(input$selectPlotHierDiss)],
    #                                               '_',
    #                                               s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv'),
    #            getDataCl(userFitDendHier, input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim))
    # 
dmattek's avatar
dmattek committed
895
896
897
898
899
900
    output$downloadDataClean <- downloadHandler(
      filename = 'tCoursesSelected_clean.csv',
      content = function(file) {
        write.csv(data4trajPlot(), file, row.names = FALSE)
      }
    )
dmattek's avatar
dmattek committed
901
902
903
    
    
    
dmattek's avatar
dmattek committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
  # Barplot with distribution of clusters across conditions
  plotHierClDist = function() {
    cat(file = stderr(), 'plotClDist: in\n')
    
    # get cell IDs with cluster assignments depending on dendrogram cut
    loc.dend <- isolate(userFitDendHier())
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClDist: loc.dend is NULL\n')
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(as.dendrogram(loc.dend), k = input$inPlotHierNclust))
    
    
dmattek's avatar
dmattek committed
919
    # get cellIDs with condition name
dmattek's avatar
dmattek committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    loc.dt.gr = isolate(getDataCond())
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotClDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # display only selected clusters
    if(isolate(input$chBPlotHierClSel))
      loc.dt = loc.dt[cl %in% isolate(input$inPlotHierClSel)]
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
    
    p.out = ggplot(loc.dt.aggr, aes(x = group, y = nCells)) +
      geom_bar(aes(fill = as.factor(cl)), stat = 'identity', position = 'fill') +
      scale_y_continuous(labels = percent) +
      ylab("percentage of cells\n") +  
      xlab("") +  
      scale_fill_discrete(name = "Cluster no.") +
      myGgplotTheme
    
    return(p.out)
    
  }
  
  #  Hierarchical - display heatmap
  getPlotHierHeatMapHeight <- function() {
    return (input$inPlotHierHeatMapHeight)
  }
  
  getPlotHierTrajHeight <- function() {
    return (input$inPlotHierTrajHeight)
  }
  
  output$outPlotHier <- renderPlot({
    locBut = input$butPlotHierHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHier: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHier()
  }, height = getPlotHierHeatMapHeight)
  
  #  Hierarchical - display timecourses plot
  output$outPlotHierTraj <- renderPlot({
    locBut = input$butPlotHierTraj
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierTraj: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierTraj()
  })
  
  #  Hierarchical - display bar plot
  output$outPlotHierClDist <- renderPlot({
    locBut = input$butPlotHierClDist
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotClDist: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierClDist()
  })
  
  
  
dmattek's avatar
dmattek committed
996
997
998
999
1000
  #  Hierarchical - Heat Map - download pdf
  callModule(downPlot, "downPlotHier",       paste0('clust_hierch_heatMap_',
                                                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                    '_',
                                                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'), plotHier)