This server has been upgraded to GitLab release 12.10.6.

tabClValid.R 12.5 KB
Newer Older
dmattek's avatar
dmattek committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This module is a tab for hierarchical clustering (base R hclust + dist)

helpText.clValid = c(alertNAsPresentDTW = paste0("NAs present. DTW cannot calculate the distance. ",
                                                "NAs and missing data can be interpolated by activating the option in the left panel. ",
                                                "If outlier points were removed, activate \"Interpolate gaps\" or ",
                                                "decrease the threshold for maximum allowed gap length. ",
                                                "The latter will result in entire trajectories with outliers being removed."),
                    alertNAsPresent = paste0("NAs present. The selected distance measure will work with missing data, ",
                                             "however caution is recommended. NAs and missing data can be interpolated by activating the option in the left panel. ",
                                             "If outlier points were removed, activate \"Interpolate gaps\" or ",
                                             "decrease the threshold for maximum allowed gap length. ",
                                             "The latter will result in entire trajectories with outliers being removed."),
                    alLearnMore = paste0("<p><a href=http://www.sthda.com/english/wiki/print.php?id=241>Clustering</a> is an <b>unsupervised</b> machine learning method for partitioning ",
                                         "dataset into a set of groups or clusters. The procedure will return clusters ",
                                         "even if the data <b>does not</b> contain any! ",
                                         "Therefore, it’s necessary to ",
                                         "assess clustering tendency before the analysis, and ",
                                         "validate the quality of the result after clustering.<p>",
                                         "<p><b>Relative validation</b>, evaluates the clustering structure ",
                                         "by varying different parameter values for the same algorithm ",
                                         "(e.g. varying the number of clusters <i>k</i>). Typically used for ",
                                         "determining the optimal number of clusters.</p>",
                                         "<p><b>Internal validation</b>, uses the internal information of the clustering process ",
                                         "to evaluate the goodness of a clustering structure without reference to external information. ",
                                         "It can be also used for estimating the number of clusters and the appropriate clustering algorithm ",
                                         "without any external data.</p>",
                                         "<p><b>External validation</b>, compares the results of a cluster analysis ",
                                         "to an externally known result, such as externally provided class labels. ",
                                         "Since we know the “true” cluster number in advance, ",
                                         "this approach is mainly used for selecting the right clustering algorithm for a specific dataset.</p>",
                                         "<p><b>Stability validation</b>, is a special version of internal validation. ",
                                         "It evaluates the consistency of a clustering result by comparing it with the clusters obtained ",
                                         "after each column is removed, one at a time.</p>"),
dmattek's avatar
dmattek committed
38
                    outPlotWss = "Within squared sum...",
dmattek's avatar
dmattek committed
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
                    outPlotSilhAvg = "Average...",
                    outPlotTree = "Dendrogram...",
                    outPlotSilhForCut = "Silhouette plot at dendrogram cut...")


# UI ----
clustValidUI <- function(id, label = "Validation") {
  ns <- NS(id)
  
  tagList(
    h4('Cluster validation'),
    actionLink(ns("alLearnMore"), "Learn more"),
    br(),
    br(),
    fluidRow(
dmattek's avatar
dmattek committed
54

dmattek's avatar
dmattek committed
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
      column(3,
             selectInput(
               ns("selectDiss"),
               label = ("Dissimilarity measure"),
               choices = list("Euclidean" = "euclidean",
                              "Manhattan" = "manhattan",
                              "Maximum"   = "maximum",
                              "Canberra"  = "canberra",
                              "DTW"       = "DTW"),
               selected = 1
             ),
             bsAlert("alertAnchorClHierNAsPresent")
             ),
      column(3,
             selectInput(
               ns("selectLinkage"),
               label = ("Linkage method"),
               choices = list(
                 "Average"  = "average",
                 "Complete" = "complete",
                 "Single"   = "single",
                 "Centroid" = "centroid",
                 "Ward"     = "ward.D",
                 "Ward D2"  = "ward.D2",
                 "McQuitty" = "mcquitty"
               ),
               selected = 2
               )
             )
    ),
    
    br(),
    tabsetPanel(
      tabPanel("Relative",
               br(),
               fluidRow(
                 column(2, 
                        actionButton(ns('butPlotRel'), 'Validate!')
                        ),
                 column(6,
                        sliderInput(
                          ns('slClValidMaxClust'),
                          'Maximum number of clusters to validate',
                          min = 2,
                          max = 20,
                          value = 10,
                          step = 1,
                          ticks = TRUE,
                          round = TRUE
                        )
                        )
               ),
               br(),
               withSpinner(plotOutput(ns('outPlotSilhAvg'))),
               bsTooltip(ns('outPlotSilhAvg'), helpText.clValid[["outPlotSilhAvg"]], 
                         placement = "top", trigger = "hover", options = NULL),
               br(),
               withSpinner(plotOutput(ns('outPlotWss'))),
               bsTooltip(ns('outPlotWss'), helpText.clValid[["outPlotWss"]], 
                         placement = "top", trigger = "hover", options = NULL)
               
      ),
      tabPanel("Internal",
               br(),
               fluidRow(
                 column(2,
                        actionButton(ns('butPlotInt'), 'Validate!')
                        ),
                 column(6,
                        sliderInput(
                          ns('slClValidNclust'),
                          'Number of dendrogram branches to cut',
                          min = 2,
                          max = 20,
                          value = 1,
                          step = 1,
                          ticks = TRUE,
                          round = TRUE
                        )
                        )
               ),
               br(),
               withSpinner(plotOutput(ns('outPlotTree'))),
               bsTooltip(ns('outPlotTree'), helpText.clValid[["outPlotTree"]], 
                         placement = "top", trigger = "hover", options = NULL),
               br(),
               withSpinner(plotOutput(ns('outPlotSilhForCut'))),
               bsTooltip(ns('outPlotSilhForCut'), helpText.clValid[["outPlotSilhForCut"]], 
                         placement = "top", trigger = "hover", options = NULL)
      )
    )
  )
}

# SERVER ----
clustValid <- function(input, output, session, in.data4clust) {

  ns = session$ns
  
  # calculate distance matrix for further clustering
  # time series arranged in rows with columns corresponding to time points
  userFitDistHier <- reactive({
    cat(file = stderr(), 'clustValid:userFitDistHier \n')
    
    loc.dm = in.data4clust()
    
    if (is.null(loc.dm)) {
      return(NULL)
    }
    
    # Throw some warnings if NAs present in the dataset.
    # DTW cannot compute distance when NA's are preset.
    # Other distance measures can be calculated but caution is required with interpretation.
    if(sum(is.na(loc.dm)) > 0) {
      if (input$selectPlotHierDiss == "DTW") {
        createAlert(session, "alertAnchorClHierNAsPresent", "alertNAsPresentDTW", title = "Error",
                    content = helpText.clHier[["alertNAsPresentDTW"]], 
                    append = FALSE,
                    style = "danger")
        return(NULL)
      } else {
        createAlert(session, "alertAnchorClHierNAsPresent", "alertNAsPresent", title = "Warning",
                    content = helpText.clHier[["alertNAsPresent"]], 
                    append = FALSE, 
                    style = "warning")
        closeAlert(session, 'alertNAsPresentDTW')
      }
    } else {
      closeAlert(session, 'alertNAsPresentDTW')
      closeAlert(session, 'alertNAsPresent')
    }
    
    # calculate distance matrix
    
    return(dist(loc.dm, method = input$selectPlotHierDiss))
  })
  
  
  calcDendCut = reactive({
    cat(file = stderr(), 'clustValid:calcDendCut \n')
    
    loc.dmdist = userFitDistHier()
    
    if (is.null(loc.dmdist)) {
      return(NULL)
    }
    
    return(LOChcut(x = loc.dmdist, 
                   k = input$slClValidNclust, 
                   hc_func = "hclust", 
                   hc_method = input$selectLinkage, hc_metric = input$selectDiss))
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  
  # plot average silhouette
  plotSilhAvg <- function() {

    loc.dmdist = userFitDistHier()
    
    if (is.null(loc.dmdist)) {
      return(NULL)
    }
    
    loc.p = LOCnbclust(x = loc.dmdist, 
                       FUNcluster = LOChcut,  
                       method = "silhouette", 
                       verbose = TRUE, 
                       k.max = input$slClValidMaxClust,
                       hc_metric = input$selectDiss,
                       hc_method = input$selectLinkage)
    return(loc.p)
  }

  # plot Ws
  plotWss <- function() {
    
    loc.dmdist = userFitDistHier()
    
    if (is.null(loc.dmdist)) {
      return(NULL)
    }
    
    loc.p = LOCnbclust(x = loc.dmdist, 
                       FUNcluster = LOChcut,  
                       method = "wss", 
                       verbose = TRUE, 
                       k.max = input$slClValidMaxClust,
                       hc_metric = input$selectDiss,
                       hc_method = input$selectLinkage)
    
    return(loc.p)
  }
  

  # plot dendrogram tree
  plotTree <- function() {
    
    loc.dend = calcDendCut()
    
    if (is.null(loc.dend)) {
      return(NULL)
    }
    
    loc.p = factoextra::fviz_dend(x = loc.dend, k = input$slClValidNclust)
    
    return(loc.p)
  }
  
  # plot silhouetts for a particular dendrogram cut
  plotSilhForCut <- function() {
    
    loc.dmdist = userFitDistHier()
    loc.dend = LOChcut(x = loc.dmdist, 
                       k = input$slClValidNclust, 
                       hc_func = "hclust", 
                       hc_method = input$selectLinkage, hc_metric = input$selectDiss)
    
    if (is.null(loc.dend)) {
      return(NULL)
    }
    
    loc.p = factoextra::fviz_silhouette(sil.obj = loc.dend, print.summary = FALSE)
    
    return(loc.p)
  }
  
  # Display silhouette
  output$outPlotSilhAvg <- renderPlot({
    locBut = input$butPlotRel
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotSilhAvg: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotSilhAvg()
  })

  
  # Display wss
  output$outPlotWss <- renderPlot({
    locBut = input$butPlotRel
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotWss: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotWss()
  })
  
  # Display tree
  output$outPlotTree <- renderPlot({
    locBut = input$butPlotInt
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotTree: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotTree()
  })
  
  # Display silhouette for a dendrogram cut
  output$outPlotSilhForCut <- renderPlot({
    locBut = input$butPlotInt
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotSilhForCut: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotSilhForCut()
  })
  
  # Pop-overs ----
  addPopover(session, 
             ns("alLearnMore"),
             title = "Classes of cluster validation",
             content = helpText.clValid[["alLearnMore"]],
             trigger = "click")
}