server.R 23.1 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4 5 6 7 8 9 10 11 12 13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16 17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
18
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
19 20 21
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
Added:  
dmattek committed
22 23
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
24
library(tca) # for time series manipulatiom, e.g. normTraj, genTraj, plotTrajRibbon
dmattek's avatar
dmattek committed
25

26
# increase file upload limit
dmattek's avatar
Added:  
dmattek committed
27
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
28

dmattek's avatar
dmattek committed
29
shinyServer(function(input, output, session) {
30
  useShinyjs()
dmattek's avatar
dmattek committed
31
  
32 33 34 35 36 37
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:  
dmattek committed
38 39
    dataLoadNuc  = isolate(input$inButLoadNuc),
    dataLoadTrajRem = isolate(input$inButLoadTrajRem)
40
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
41 42
  )
  
dmattek's avatar
dmattek committed
43 44 45
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
46
  # FILE LOAD
47 48 49 50 51 52 53 54 55 56
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
57
    return(tca::genTraj(in.nwells = 3))
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
74 75 76 77 78 79 80
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
Added:  
dmattek committed
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

  # load main data file
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
114 115
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
116 117 118
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
119
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
120 121 122
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
123
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
124 125 126 127 128 129 130 131 132
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
133
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
134 135 136 137
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
138
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
139 140 141 142 143 144 145 146 147 148 149 150 151
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
152 153 154 155 156
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
157 158 159
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
160 161 162 163 164 165 166 167
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
168 169 170 171 172 173 174
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
175
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
176
      locCols = getDataNucCols()
177
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
178 179 180 181 182 183 184 185 186
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
187 188 189 190 191 192 193 194 195 196
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
197
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
198

dmattek's avatar
dmattek committed
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
216
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
217

dmattek's avatar
dmattek committed
218 219 220 221 222 223 224 225 226 227
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
252
  
dmattek's avatar
dmattek committed
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
284 285
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
305 306
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
307 308 309 310
    }
  })
  
  
dmattek's avatar
dmattek committed
311 312 313 314 315
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:  
dmattek committed
316
      
dmattek's avatar
dmattek committed
317 318 319 320 321
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:  
dmattek committed
322
        value = 99.5, 
dmattek's avatar
dmattek committed
323 324
        step = 0.1
      )
dmattek's avatar
dmattek committed
325
      
dmattek's avatar
Mod:  
dmattek committed
326
      
dmattek's avatar
dmattek committed
327 328 329
    }
  })
  
dmattek's avatar
dmattek committed
330 331 332 333 334 335 336 337 338
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
339
  
dmattek's avatar
dmattek committed
340 341 342
  ####
  ## data processing
  
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
391
  getDataNucCols <- reactive({
392 393 394 395 396 397 398 399 400 401 402
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
403
    cat(file = stderr(), 'dataMod\n')
404 405
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
406
    if (is.null(loc.dt))
407 408
      return(NULL)
    
409
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:  
dmattek committed
429
    } else {
dmattek's avatar
Added:  
dmattek committed
430
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
431 432
    }
    
dmattek's avatar
dmattek committed
433
    
dmattek's avatar
Added:  
dmattek committed
434 435 436 437 438 439
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
440 441
      
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
442 443
    }
    
444 445 446
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
447 448 449 450 451
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
452
    
dmattek's avatar
dmattek committed
453 454 455 456
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
457 458
  })
  
dmattek's avatar
Mod:  
dmattek committed
459
  
dmattek's avatar
dmattek committed
460 461 462
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
463 464 465
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
466
    
dmattek's avatar
dmattek committed
467 468 469 470
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
471 472
  })
  
dmattek's avatar
dmattek committed
473
  
474 475 476
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
477
  #    realtime - selected from input
dmattek's avatar
dmattek committed
478
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
479
  #               (can be a single column or result of an operation on two cols)
480 481
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
482 483
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
484 485 486 487
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
488
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
489
    cat(file = stderr(), 'data4trajPlot\n')
490 491
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
492
    if (is.null(loc.dt))
493 494
      return(NULL)
    
495
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
496
    if (input$inSelMath == '')
497 498 499 500 501 502
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
503
    # create expression for 'group' column
504 505
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
506 507 508 509 510 511 512 513 514 515 516
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
517
    
dmattek's avatar
dmattek committed
518 519

    # column name with time
520 521
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
522 523
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
524
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
525
    
dmattek's avatar
Added:  
dmattek committed
526 527
    
    # Find column names with position
528
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
529
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
530
    
531 532 533
    cat(loc.s.pos.x, loc.s.pos.y, '\n')
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
534 535 536 537
      locPos = TRUE
    else
      locPos = FALSE
    
538 539 540 541
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
542 543 544 545 546 547
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
548
      loc.s.objnum = loc.s.objnum[1]
549
      locObjNum = TRUE
dmattek's avatar
dmattek committed
550
    }
551 552
    
    
553 554
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:  
dmattek committed
597
        # add a column with status of track selection
598
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
599
    }
600
      
dmattek's avatar
dmattek committed
601

602 603 604 605 606 607
    ## Interpolate NA's and data points not include
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
    # Tracks are interpolated only within min and max realtime of every cell id
    setkey(loc.out, group, id, realtime)
    loc.out = loc.out[setkey(loc.out[, .(min(realtime):max(realtime)), by = .(group, id)], group, id, V1)]

dmattek's avatar
dmattek committed
608 609 610 611 612 613 614
    # x-check: print all rows with NA's
    print('Rows with NAs:')
    print(loc.out[rowSums(is.na(loc.out)) > 0, ])
    
    # Merge will create NA's where a realtime is missing.
    # Also, NA's may be already present in the dataset'.
    # Interpolate (linear) them with na.interpolate
615
    if(locPos)
dmattek's avatar
dmattek committed
616
      s.cols = c('y', 'pos.x', 'pos.y')
617
    else
dmattek's avatar
dmattek committed
618
      s.cols = c('y')
619 620
    
    loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
dmattek's avatar
dmattek committed
621 622 623 624 625 626 627 628 629 630 631 632
    

    # !!! Current issue with interpolation:
    # The column mid.in is not taken into account.
    # If a trajectory is selected in the UI,
    # the mid.in column is added (if it doesn't already exist in the dataset),
    # and for the interpolated point, it will still be NA. Not really an issue.
    #
    # Also, think about the current option of having mid.in column in the uploaded dataset.
    # Keep it? Expand it?
    # Create a UI filed for selecting the column with mid.in data.
    # What to do with that column during interpolation (see above)
dmattek's avatar
Mod:  
dmattek committed
633
    
634
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
635 636 637
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
638
    
639
    ## Normalization
dmattek's avatar
dmattek committed
640
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
641
    if (input$chBnorm) {
642
      loc.out = tca::normTraj(
dmattek's avatar
dmattek committed
643 644 645 646 647 648 649 650 651 652
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
653 654
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
655 656 657 658
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
659 660 661 662 663 664
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:  
dmattek committed
682
    
dmattek's avatar
dmattek committed
683
    return(loc.out)
dmattek's avatar
dmattek committed
684 685
  })
  
dmattek's avatar
dmattek committed
686 687 688 689 690 691 692 693 694 695 696 697 698
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:  
dmattek committed
699
    #print(loc.dt)
dmattek's avatar
dmattek committed
700
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:  
dmattek committed
701
    #print(loc.out)
dmattek's avatar
dmattek committed
702 703
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:  
dmattek committed
704
    
dmattek's avatar
dmattek committed
705 706
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
707 708 709 710 711 712 713
    
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
    loc.out = t(na.interpolation(t(loc.out)))
    
dmattek's avatar
dmattek committed
714
    return(loc.out)
dmattek's avatar
Mod:  
dmattek committed
715
  }) 
dmattek's avatar
dmattek committed
716
  
dmattek's avatar
dmattek committed
717
  
dmattek's avatar
Added:  
dmattek committed
718 719 720 721 722 723 724 725 726
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
727 728 729 730
  ###### Trajectory plotting
  callModule(modTrajRibbonPlot, 'modTrajRibbon', data4trajPlot)
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
             in.data = data4trajPlot)
dmattek's avatar
dmattek committed
731
  
732 733 734 735 736
  ###### Trajectory plotting
  callModule(modTrajPlot, 'modTrajPlot', data4trajPlot)
  
  ## UI for selecting trajectories
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
737 738
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
739
    
dmattek's avatar
dmattek committed
740 741 742
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
743
    
dmattek's avatar
dmattek committed
744
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
745
    if (!is.null(loc.v)) {
746
      selectInput(
dmattek's avatar
dmattek committed
747 748 749
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
750
        width = '100%',
dmattek's avatar
dmattek committed
751
        multiple = TRUE
752
      )
dmattek's avatar
dmattek committed
753 754 755
    }
  })
  
756
  ###### AUC calculation and plotting
dmattek's avatar
Added:  
dmattek committed
757 758
  callModule(modAUCplot, 'tabAUC', data4trajPlot)
  
dmattek's avatar
Added:  
dmattek committed
759 760
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
761
  
dmattek's avatar
dmattek committed
762 763 764
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
765
  ##### Hierarchical clustering
dmattek's avatar
Added:  
dmattek committed
766
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
767 768
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
Added:  
dmattek committed
769
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot)
dmattek's avatar
dmattek committed
770

dmattek's avatar
Mod:  
dmattek committed
771
  
dmattek's avatar
dmattek committed
772
})