server.R 36.7 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4 5 6 7 8 9 10 11 12 13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16 17 18 19 20
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
library(RColorBrewer)
library(sparcl) # sparse hierarchical and k-means
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
21

22
# increase file upload limit
dmattek's avatar
Added:  
dmattek committed
23
options(shiny.maxRequestSize = 80 * 1024 ^ 2)
dmattek's avatar
dmattek committed
24

dmattek's avatar
dmattek committed
25
shinyServer(function(input, output, session) {
26
  useShinyjs()
dmattek's avatar
dmattek committed
27
  
28 29 30 31 32 33 34 35
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
    dataLoadNuc  = isolate(input$inButLoadNuc)
    #dataLoadStim = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
36 37
  )
  
dmattek's avatar
dmattek committed
38 39 40
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
41
  # FILE LOAD
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
69 70 71 72 73 74 75
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
  
dmattek's avatar
dmattek committed
76 77
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'rack'][1] # index 1 at the end in case more matches; select 1st
    
    selectInput(
      'inSelTrackLabel',
      'Select Track Label (e.g. objNuc_Track_ObjectsLabel):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
    locColSel = locCols[locCols %like% 'RealTime'][1] # index 1 at the end in case more matches; select 1st
    
    cat(locColSel, '\n')
    selectInput(
      'inSelTime',
      'Select time column (e.g. RealTime):',
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
      locColSel = locCols[locCols %like% 'ite']
      if (length(locColSel) == 0)
        locColSel = locCols[locCols %like% 'eries'][1] # index 1 at the end in case more matches; select 1st
      else if (length(locColSel) > 1) {
        locColSel = locColSel[1]
      }
      #    cat('UI varSelGroup::locColSel ', locColSel, '\n')
      selectInput(
        'inSelGroup',
        'Select one or more facet groupings (e.g. Site, Well, Channel):',
        locCols,
        width = '100%',
        selected = locColSel,
        multiple = TRUE
      )
    }
    
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
dmattek's avatar
Added:  
dmattek committed
138 139 140 141 142 143 144 145 146 147 148 149
    if (!input$chBtrackUni) {
      locCols = getDataNucCols()
      locColSel = locCols[locCols %like% 'ite'][1] # index 1 at the end in case more matches; select 1st
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
150 151 152 153 154 155 156 157 158 159
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
dmattek's avatar
dmattek committed
160 161
      locColSel = locCols[locCols %like% 'objCyto_Intensity_MeanIntensity_imErkCor.*' |
                            locCols %like% 'Ratio'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
162

dmattek's avatar
dmattek committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
      locColSel = locCols[locCols %like% 'objNuc_Intensity_MeanIntensity_imErkCor.*'][1] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
181

dmattek's avatar
dmattek committed
182 183 184 185 186 187 188 189 190 191
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
216
  
dmattek's avatar
dmattek committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
248 249
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
269 270
                   label = 'Normalisation grouping',
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory (Korean way)' = 'id'))
dmattek's avatar
dmattek committed
271 272 273 274
    }
  })
  
  
dmattek's avatar
dmattek committed
275 276 277 278 279 280
  # UI for removing outliers
  
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:  
dmattek committed
281
      
dmattek's avatar
dmattek committed
282 283 284 285 286 287 288 289
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
        value = 99, 
        step = 0.1
      )
dmattek's avatar
dmattek committed
290
      
dmattek's avatar
Mod:  
dmattek committed
291
      
dmattek's avatar
dmattek committed
292 293 294
    }
  })
  
dmattek's avatar
dmattek committed
295 296 297 298 299 300 301 302 303
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
304
  
dmattek's avatar
dmattek committed
305 306 307 308 309 310 311 312 313
  ####
  ## data processing
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
    return(userDataGen())
  })
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
  
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
363
  getDataNucCols <- reactive({
364 365 366 367 368 369 370 371 372 373 374
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
375
    cat(file = stderr(), 'dataMod\n')
376 377
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
378
    if (is.null(loc.dt))
379 380
      return(NULL)
    
dmattek's avatar
Added:  
dmattek committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    if (!input$chBtrackUni) {
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:  
dmattek committed
401
    } else {
dmattek's avatar
Added:  
dmattek committed
402
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
403 404
    }
    
dmattek's avatar
dmattek committed
405
    
406 407 408
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
409 410 411 412 413
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
414
    
dmattek's avatar
dmattek committed
415 416 417 418
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
419 420
  })
  
dmattek's avatar
dmattek committed
421
  # return all unique track object labels (created in dataMod)
dmattek's avatar
dmattek committed
422
  # This will be used to display in UI for trajectory highlighting
dmattek's avatar
dmattek committed
423 424 425 426 427 428 429 430 431
  getDataTrackObjLabUni_afterTrim <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni_afterTrim\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$id))
  })
dmattek's avatar
Mod:  
dmattek committed
432
  
dmattek's avatar
dmattek committed
433 434 435
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
436 437 438
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
439
    
dmattek's avatar
dmattek committed
440 441 442 443
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
444 445
  })
  
dmattek's avatar
dmattek committed
446 447 448 449 450 451 452 453 454 455 456 457 458
  # return dt with cell IDs and their corresponding condition name
  # The condition is the column defined by facet groupings
  getDataCond <- reactive({
    cat(file = stderr(), 'getDataCond\n')
    loc.dt = data4trajPlot()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[, .(id, group)]))
    
  })
  
459 460 461
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
462
  #    realtime - selected from input
dmattek's avatar
dmattek committed
463
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
464 465 466 467 468
  #               (can be a single column or result of an operation on two cols)
  #    id       - trackObjectsLabelUni (created in dataMod)
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
  #               highlight status from UI
469
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
470
    cat(file = stderr(), 'data4trajPlot\n')
471 472
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
473
    if (is.null(loc.dt))
474 475 476
      return(NULL)
    
    
dmattek's avatar
dmattek committed
477
    if (input$inSelMath == '')
478 479 480 481 482 483 484 485 486
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
    # create expression for parsing
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
487 488 489 490
    if(length(input$inSelGroup) == 0)
      return(NULL)
    loc.s.gr = sprintf("paste(%s, sep=';')",
                       paste(input$inSelGroup, sep = '', collapse = ','))
491 492 493
    
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
494 495 496 497
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
    locBut = input$chBhighlightTraj
    
dmattek's avatar
Added:  
dmattek committed
498 499
    
    # Find column names with position
dmattek's avatar
Mod:  
dmattek committed
500 501
    loc.s.pos.x = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*X') | names(loc.dt) %like% c('.*os.x')]
    loc.s.pos.y = names(loc.dt)[names(loc.dt) %like% c('.*ocation.*Y') | names(loc.dt) %like% c('.*os.y')]
dmattek's avatar
Added:  
dmattek committed
502 503 504 505 506 507
    
    if (length(loc.s.pos.x) == 1 & length(loc.s.pos.y) == 1)
      locPos = TRUE
    else
      locPos = FALSE
    
508 509 510
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
    if (sum(names(loc.dt) %in% 'mid.in') > 0) {
dmattek's avatar
Added:  
dmattek committed
511 512 513 514 515 516
      if (locPos) # position columns present
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
          realtime = eval(parse(text = loc.s.rt)),
dmattek's avatar
Mod:  
dmattek committed
517 518
          pos.x = get(loc.s.pos.x),
          pos.y = get(loc.s.pos.y),
dmattek's avatar
Added:  
dmattek committed
519
          mid.in = mid.in
dmattek's avatar
Mod:  
dmattek committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        )] else
          loc.out = loc.dt[, .(
            y = eval(parse(text = loc.s.y)),
            id = trackObjectsLabelUni,
            group = eval(parse(text = loc.s.gr)),
            realtime = eval(parse(text = loc.s.rt)),
            mid.in = mid.in
          )]
        
        
        
        
        # add 3rd level with status of track selection
        # to a column with trajectory filtering status
        if (locBut) {
          loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
        }
        
538
    } else {
dmattek's avatar
Added:  
dmattek committed
539 540 541 542 543
      if (locPos) # position columns present
        loc.out = loc.dt[, .(
          y = eval(parse(text = loc.s.y)),
          id = trackObjectsLabelUni,
          group = eval(parse(text = loc.s.gr)),
dmattek's avatar
Mod:  
dmattek committed
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
          realtime = eval(parse(text = loc.s.rt)),
          pos.x = get(loc.s.pos.x),
          pos.y = get(loc.s.pos.y)
        )] else
          loc.out = loc.dt[, .(
            y = eval(parse(text = loc.s.y)),
            id = trackObjectsLabelUni,
            group = eval(parse(text = loc.s.gr)),
            realtime = eval(parse(text = loc.s.rt))
          )]
        
        
        # add a column with status of track selection
        if (locBut) {
          loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
        }
560
    }
561
    
dmattek's avatar
Added:  
dmattek committed
562 563
    # add XY location if present in the dataset
    
dmattek's avatar
dmattek committed
564 565
    # remove NAs
    loc.out = loc.out[complete.cases(loc.out)]
dmattek's avatar
Mod:  
dmattek committed
566
    
dmattek's avatar
dmattek committed
567 568 569 570
    # Trim x-axis (time)
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
571 572
    
    # Normalization
dmattek's avatar
dmattek committed
573
    # F-n myNorm adds additional column with .norm suffix
dmattek's avatar
dmattek committed
574 575 576 577 578 579 580 581 582 583 584 585
    if (input$chBnorm) {
      loc.out = myNorm(
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
586 587
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
588 589 590 591
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
592 593 594 595 596 597
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5)]
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:  
dmattek committed
615
    
dmattek's avatar
dmattek committed
616
    return(loc.out)
dmattek's avatar
dmattek committed
617 618
  })
  
dmattek's avatar
dmattek committed
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:  
dmattek committed
635
    
dmattek's avatar
dmattek committed
636 637 638
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
    return(loc.out)
dmattek's avatar
Mod:  
dmattek committed
639
  }) 
dmattek's avatar
dmattek committed
640
  
dmattek's avatar
dmattek committed
641 642
  
  # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
dmattek committed
643 644
  getDataCl = function(in.dend, in.k, in.ids) {
    cat(file = stderr(), 'getDataCl \n')
dmattek's avatar
Mod:  
dmattek committed
645
    
dmattek's avatar
dmattek committed
646
    loc.dt.cl = data.table(id = in.ids,
dmattek's avatar
dmattek committed
647 648 649
                           cl = cutree(as.dendrogram(in.dend), k = in.k))
  }
  
dmattek's avatar
dmattek committed
650 651
  ####
  ## UI for trajectory plot
dmattek's avatar
dmattek committed
652
  
dmattek's avatar
dmattek committed
653 654
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
655
    
dmattek's avatar
dmattek committed
656 657 658
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
659
    
dmattek's avatar
dmattek committed
660
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
661
    if (!is.null(loc.v)) {
662
      selectInput(
dmattek's avatar
dmattek committed
663 664 665
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
666
        width = '100%',
dmattek's avatar
dmattek committed
667
        multiple = TRUE
668
      )
dmattek's avatar
dmattek committed
669 670 671
    }
  })
  
dmattek's avatar
Mod:  
dmattek committed
672
  callModule(modTrajPlot, 'modTrajPlot', data4trajPlot)
dmattek's avatar
dmattek committed
673
  
dmattek's avatar
Added:  
dmattek committed
674 675
  ###### Box-plot
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot)
dmattek's avatar
dmattek committed
676
  
dmattek's avatar
dmattek committed
677 678
  
  
dmattek's avatar
dmattek committed
679 680 681
  ###### Scatter plot
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot)
  
dmattek's avatar
dmattek committed
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  ##### Hierarchical clustering
  
  output$uiPlotHierClSel = renderUI({
    if(input$chBPlotHierClSel) {
      selectInput('inPlotHierClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  
  userFitDendHier <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    cl.dist = dist(dm.t, method = s.cl.diss[as.numeric(input$selectPlotHierDiss)])
    cl.hc = hclust(cl.dist, method = s.cl.linkage[as.numeric(input$selectPlotHierLinkage)])
    cl.lev = rev(row.names(dm.t))
    
    dend <- as.dendrogram(cl.hc)
    dend <- color_branches(dend, k = input$inPlotHierNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHier <- function() {
    
    loc.dm = data4clust()
    if (is.null(loc.dm))
      return(NULL)
    
    loc.dend <- userFitDendHier()
    if (is.null(loc.dend))
      return(NULL)
    
    if (input$inPlotHierRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(loc.dend)
    col_labels <- col_labels[order(order.dendrogram(loc.dend))]
    
    if (input$selectPlotHierDend) {
      assign("var.tmp.1", loc.dend)
      var.tmp.2 = "row"
    } else {
      assign("var.tmp.1", FALSE)
      var.tmp.2 = "none"
    }
    
    loc.p = heatmap.2(
      loc.dm,
      Colv = "NA",
      Rowv = var.tmp.1,
      srtCol = 90,
      dendrogram = var.tmp.2,
      trace = "none",
      key = input$selectPlotHierKey,
      margins = c(input$inPlotHierMarginX, input$inPlotHierMarginY),
      col = my_palette,
      na.col = grey(input$inPlotHierNAcolor),
      denscol = "black",
      density.info = "density",
      RowSideColors = col_labels,
      colRow = col_labels,
dmattek's avatar
Mod:  
dmattek committed
756 757 758
      #      sepcolor = grey(input$inPlotHierGridColor),
      #      colsep = 1:ncol(loc.dm),
      #      rowsep = 1:nrow(loc.dm),
dmattek's avatar
dmattek committed
759 760 761 762 763 764 765 766 767 768 769 770 771 772
      cexRow = input$inPlotHierFontX,
      cexCol = input$inPlotHierFontY,
      main = paste(
        "Distance measure: ",
        s.cl.diss[as.numeric(input$selectPlotHierDiss)],
        "\nLinkage method: ",
        s.cl.linkage[as.numeric(input$selectPlotHierLinkage)]
      )
    )
    
    return(loc.p)
  }
  
  
dmattek's avatar
Mod:  
dmattek committed
773 774 775 776 777
  # prepare data for plotting trajectories per cluster
  # outputs dt as data4trajPlot but with an additional column 'cl' that holds cluster numbers
  # additionally some clusters are omitted according to manual selection
  data4trajPlotCl <- reactive({
    cat(file = stderr(), 'data4trajPlotCl: in\n')
dmattek's avatar
dmattek committed
778
    
dmattek's avatar
Mod:  
dmattek committed
779
    loc.dt = data4trajPlot()
dmattek's avatar
dmattek committed
780 781
    
    if (is.null(loc.dt)) {
dmattek's avatar
Mod:  
dmattek committed
782
      cat(file = stderr(), 'data4trajPlotCl: dt is NULL\n')
dmattek's avatar
dmattek committed
783 784 785
      return(NULL)
    }
    
dmattek's avatar
Mod:  
dmattek committed
786
    cat(file = stderr(), 'data4trajPlotCl: dt not NULL\n')
dmattek's avatar
dmattek committed
787 788
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
dmattek committed
789
    loc.dt.cl = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
790 791 792
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
    # display only selected clusters
dmattek's avatar
Mod:  
dmattek committed
793 794
    if(input$chBPlotHierClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierClSel]
dmattek's avatar
dmattek committed
795
    
dmattek's avatar
Mod:  
dmattek committed
796 797
    return(loc.dt)    
  })
dmattek's avatar
dmattek committed
798
  
dmattek's avatar
Mod:  
dmattek committed
799 800 801 802
  callModule(modTrajPlot, 'modPlotHierTraj', data4trajPlotCl, 'cl',  paste0('clust_hierch_tCourses_',
                                                                            s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                                            '_',
                                                                            s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'))
dmattek's avatar
dmattek committed
803
  
dmattek's avatar
Added:  
dmattek committed
804
  # download a list of cellIDs with cluster assignments
dmattek's avatar
dmattek committed
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
  output$downCellCl <- downloadHandler(
    filename = function() {
      paste0('clust_hierch_data_',
             s.cl.diss[as.numeric(input$selectPlotHierDiss)],
             '_',
             s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHier(), input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  output$downCellClSpar <- downloadHandler(
    filename = function() {
      paste0('clust_hierchSpar_data_',
             s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
             '_',
             s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.csv')
    },
    
    content = function(file) {
      write.csv(x = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim()), file = file, row.names = FALSE)
    }
  )
  
  
dmattek's avatar
Mod:  
dmattek committed
832 833 834 835 836 837
  # callModule(downCellCl, 'downDataHier', paste0('clust_hierch_data_',
  #                                               s.cl.diss[as.numeric(input$selectPlotHierDiss)],
  #                                               '_',
  #                                               s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.csv'),
  #            getDataCl(userFitDendHier, input$inPlotHierNclust, getDataTrackObjLabUni_afterTrim))
  # 
dmattek's avatar
Added:  
dmattek committed
838
  
dmattek's avatar
Mod:  
dmattek committed
839 840 841 842 843 844 845 846 847 848 849
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
  
  # prepare data for barplot with distribution of items per condition  
  data4clDistPlot <- reactive({
    cat(file = stderr(), 'data4clDistPlot: in\n')
dmattek's avatar
dmattek committed
850 851
    
    # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
Mod:  
dmattek committed
852
    loc.dend <- userFitDendHier()
dmattek's avatar
dmattek committed
853 854 855 856 857 858 859 860 861
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClDist: loc.dend is NULL\n')
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
                           cl = cutree(as.dendrogram(loc.dend), k = input$inPlotHierNclust))
    
    
dmattek's avatar
dmattek committed
862
    # get cellIDs with condition name
dmattek's avatar
Mod:  
dmattek committed
863
    loc.dt.gr = getDataCond()
dmattek's avatar
dmattek committed
864 865 866 867 868 869 870 871
    if (is.null(loc.dt.gr)) {
      cat(file = stderr(), 'plotClDist: loc.dt.gr is NULL\n')
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
    # display only selected clusters
dmattek's avatar
Mod:  
dmattek committed
872 873
    if(input$chBPlotHierClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierClSel]
dmattek's avatar
dmattek committed
874 875 876
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
dmattek's avatar
Mod:  
dmattek committed
877
    return(loc.dt.aggr)
dmattek's avatar
dmattek committed
878
    
dmattek's avatar
Mod:  
dmattek committed
879
  })
dmattek's avatar
dmattek committed
880
  
dmattek's avatar
Mod:  
dmattek committed
881

dmattek's avatar
dmattek committed
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
  #  Hierarchical - display heatmap
  getPlotHierHeatMapHeight <- function() {
    return (input$inPlotHierHeatMapHeight)
  }
  
  output$outPlotHier <- renderPlot({
    locBut = input$butPlotHierHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHier: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHier()
  }, height = getPlotHierHeatMapHeight)
  
  
dmattek's avatar
dmattek committed
900 901 902 903 904 905
  #  Hierarchical - Heat Map - download pdf
  callModule(downPlot, "downPlotHier",       paste0('clust_hierch_heatMap_',
                                                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                                                    '_',
                                                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'), plotHier)

dmattek's avatar
Mod:  
dmattek committed
906 907 908 909 910 911
  callModule(modClDistPlot, 'hierClDistPlot', data4clDistPlot,
             paste0('clust_hierch_clDist_',
                    s.cl.diss[as.numeric(input$selectPlotHierDiss)],
                    '_',
                    s.cl.linkage[as.numeric(input$selectPlotHierLinkage)], '.pdf'))
  
dmattek's avatar
dmattek committed
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
  
  ##### Sparse hierarchical clustering using sparcl
  
  # UI for advanced options
  output$uiPlotHierSparNperms = renderUI({
    if (input$inHierSparAdv)
      sliderInput(
        'inPlotHierSparNperms',
        'Number of permutations',
        min = 1,
        max = 20,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  # UI for advanced options
  output$uiPlotHierSparNiter = renderUI({
    if (input$inHierSparAdv)
      sliderInput(
        'inPlotHierSparNiter',
        'Number of iterations',
        min = 1,
        max = 50,
        value = 1,
        step = 1,
        ticks = TRUE
      )
  })
  
  output$uiPlotHierSparClSel = renderUI({
    if(input$chBPlotHierSparClSel) {
      selectInput('inPlotHierSparClSel', 'Select clusters to display', 
                  choices = seq(1, input$inPlotHierSparNclust, 1),
                  multiple = TRUE, 
                  selected = 1)
    }
  })
  
dmattek's avatar
Mod:  
dmattek committed
952
  
dmattek's avatar
dmattek committed
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  getPlotHierSparHeatMapHeight <- function() {
    return (input$inPlotHierSparHeatMapHeight)
  }
  
  userFitHierSpar <- reactive({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    #cat('rownames: ', rownames(dm.t), '\n')
    
    perm.out <- HierarchicalSparseCluster.permute(
      dm.t,
      wbounds = NULL,
      nperms = ifelse(input$inHierSparAdv, input$inPlotHierSparNperms, 1),
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    
    sparsehc <- HierarchicalSparseCluster(
      dists = perm.out$dists,
      wbound = perm.out$bestw,
      niter = ifelse(input$inHierSparAdv, input$inPlotHierSparNiter, 1),
      method = s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)],
      dissimilarity = s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)]
    )
    return(sparsehc)
  })
  
  
  userFitDendHierSpar <- reactive({
    sparsehc = userFitHierSpar()
    if (is.null(sparsehc)) {
      return()
    }
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    return(dend)
  })
  
  # Function instead of reactive as per:
  # http://stackoverflow.com/questions/26764481/downloading-png-from-shiny-r
  # This function is used to plot and to downoad a pdf
  plotHierSpar <- function() {
    
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    if (input$inPlotHierSparRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(dend)
    col_labels <- col_labels[order(order.dendrogram(dend))]
    
    if (input$selectPlotHierSparDend == 1)
      assign("var.tmp", dend)
    else
      assign("var.tmp", FALSE)
    
    
    loc.colnames = paste0(ifelse(sparsehc$ws == 0, "",
                                 ifelse(
                                   sparsehc$ws <= 0.1,
                                   "* ",
                                   ifelse(sparsehc$ws <= 0.5, "** ", "*** ")
                                 )),  colnames(dm.t))
    
    loc.colcol   = ifelse(sparsehc$ws == 0,
                          "black",
                          ifelse(
                            sparsehc$ws <= 0.1,
                            "blue",
                            ifelse(sparsehc$ws <= 0.5, "green", "red")
                          ))
    
    
    loc.p = heatmap.2(
      dm.t,
      Colv = "NA",
      Rowv = var.tmp,
      srtCol = 90,
      dendrogram = ifelse(input$selectPlotHierSparDend == 1, "row", 'none'),
      trace = "none",
      key = input$selectPlotHierSparKey,
      margins = c(
        input$inPlotHierSparMarginX,
        input$inPlotHierSparMarginY
      ),
      col = my_palette,
      na.col = grey(input$inPlotHierSparNAcolor),
      denscol = "black",
      density.info = "density",
      RowSideColors = col_labels,
      colRow = col_labels,
      colCol = loc.colcol,
      labCol = loc.colnames,
dmattek's avatar
Mod:  
dmattek committed
1063 1064 1065
      #      sepcolor = grey(input$inPlotHierSparGridColor),
      #      colsep = 1:ncol(dm.t),
      #      rowsep = 1:nrow(dm.t),
dmattek's avatar
dmattek committed
1066 1067 1068 1069 1070 1071 1072 1073
      cexRow = input$inPlotHierSparFontX,
      cexCol = input$inPlotHierSparFontY,
      main = paste("Linkage method: ", s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)])
    )
    
    return(loc.p)
  }
  
dmattek's avatar
Mod:  
dmattek committed
1074 1075 1076 1077 1078 1079 1080
  # prepare data for plotting trajectories per cluster
  # outputs dt as data4trajPlot but with an additional column 'cl' that holds cluster numbers
  # additionally some clusters are omitted according to manual selection
  data4trajPlotClSpar <- reactive({
    cat(file = stderr(), 'data4trajPlotClSpar: in\n')
    
    loc.dt = data4trajPlot()
dmattek's avatar
dmattek committed
1081 1082
    
    if (is.null(loc.dt)) {
dmattek's avatar
Mod:  
dmattek committed
1083
      cat(file = stderr(), 'data4trajPlotClSpar: dt is NULL\n')
dmattek's avatar
dmattek committed
1084 1085 1086
      return(NULL)
    }
    
dmattek's avatar
Mod:  
dmattek committed
1087
    cat(file = stderr(), 'data4trajPlotClSpar: dt not NULL\n')
dmattek's avatar
dmattek committed
1088 1089
    
    # get cellIDs with cluster assignments based on dendrogram cut
dmattek's avatar
Mod:  
dmattek committed
1090
    loc.dt.cl = getDataCl(userFitDendHierSpar(), input$inPlotHierSparNclust, getDataTrackObjLabUni_afterTrim())
dmattek's avatar
dmattek committed
1091 1092
    loc.dt = merge(loc.dt, loc.dt.cl, by = 'id')
    
dmattek's avatar
Mod:  
dmattek committed
1093 1094 1095
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
dmattek's avatar
dmattek committed
1096
    
dmattek's avatar
Mod:  
dmattek committed
1097 1098
    return(loc.dt)    
  })
dmattek's avatar
dmattek committed
1099
  
dmattek's avatar
Mod:  
dmattek committed
1100 1101 1102 1103 1104
  callModule(modTrajPlot, 'modPlotHierSparTraj', data4trajPlotClSpar, 'cl', paste0('clust_hierchSparse_tCourses_',
                                                                                   s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                                                   '_',
                                                                                   s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))

dmattek's avatar
dmattek committed
1105
  
dmattek's avatar
Mod:  
dmattek committed
1106 1107 1108 1109
  
  # prepare data for barplot with distribution of items per condition  
  data4clSparDistPlot <- reactive({
    cat(file = stderr(), 'data4clSparDistPlot: in\n')
dmattek's avatar
dmattek committed
1110 1111
    
    # get cell IDs with cluster assignments depending on dendrogram cut
dmattek's avatar
Mod:  
dmattek committed
1112 1113 1114
    loc.dend <- userFitHierSpar()
    if (is.null(loc.dend)) {
      cat(file = stderr(), 'plotClSparDist: loc.dend is NULL\n')
dmattek's avatar
dmattek committed
1115 1116 1117 1118
      return(NULL)
    }
    
    loc.dt.cl = data.table(id = getDataTrackObjLabUni_afterTrim(),
dmattek's avatar
Mod:  
dmattek committed
1119
                           cl = cutree(as.dendrogram(loc.dend$hc), k = input$inPlotHierSparNclust))
dmattek's avatar
dmattek committed
1120 1121
    
    
dmattek's avatar
Mod:  
dmattek committed
1122 1123
    # get cellIDs with condition name
    loc.dt.gr = getDataCond()
dmattek's avatar
dmattek committed
1124
    if (is.null(loc.dt.gr)) {
dmattek's avatar
Mod:  
dmattek committed
1125
      cat(file = stderr(), 'plotClSparDist: loc.dt.gr is NULL\n')
dmattek's avatar
dmattek committed
1126 1127 1128 1129 1130
      return(NULL)
    }
    
    loc.dt = merge(loc.dt.cl, loc.dt.gr, by = 'id')
    
dmattek's avatar
Mod:  
dmattek committed
1131 1132 1133
    # display only selected clusters
    if(input$chBPlotHierSparClSel)
      loc.dt = loc.dt[cl %in% input$inPlotHierSparClSel]
dmattek's avatar
dmattek committed
1134 1135 1136
    
    loc.dt.aggr = loc.dt[, .(nCells = .N), by = .(group, cl)]
    
dmattek's avatar
Mod:  
dmattek committed
1137
    return(loc.dt.aggr)
dmattek's avatar
dmattek committed
1138
    
dmattek's avatar
Mod:  
dmattek committed
1139 1140 1141 1142 1143 1144 1145 1146
  })
  
  callModule(modClDistPlot, 'hierClSparDistPlot', data4clSparDistPlot,
             paste0('clust_hierchSparse_clDist_',
                    s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                    '_',
                    s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'))
  
dmattek's avatar
dmattek committed
1147

dmattek's avatar
Mod:  
dmattek committed
1148
  
dmattek's avatar
dmattek committed
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
  # Sparse Hierarchical - display heatmap
  output$outPlotHierSpar <- renderPlot({
    locBut = input$butPlotHierSparHeatMap
    
    if (locBut == 0) {
      cat(file = stderr(), 'outPlotHierSpar: Go button not pressed\n')
      
      return(NULL)
    }
    
    plotHierSpar()
  }, height = getPlotHierSparHeatMapHeight)
  
  # Sparse Hierarchical - Heat Map - download pdf
dmattek's avatar
dmattek committed
1163 1164 1165
  callModule(downPlot, "downPlotHierSparHM",       paste0('clust_hierchSparse_heatMap_',
                                                          s.cl.spar.diss[as.numeric(input$selectPlotHierSparDiss)],
                                                          '_',
dmattek's avatar
Mod:  
dmattek committed
1166
                                                          s.cl.spar.linkage[as.numeric(input$selectPlotHierSparLinkage)], '.pdf'), plotHierSpar)
dmattek's avatar
dmattek committed
1167
  
dmattek's avatar
dmattek committed
1168

dmattek's avatar
dmattek committed
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  # Sparse Hierarchical clustering (sparcl) interactive version
  output$plotHierSparInt <- renderD3heatmap({
    dm.t = data4clust()
    if (is.null(dm.t)) {
      return()
    }
    
    sparsehc <- userFitHierSpar()
    
    dend <- as.dendrogram(sparsehc$hc)
    dend <- color_branches(dend, k = input$inPlotHierSparNclust)
    
    if (input$inPlotHierSparRevPalette)
      my_palette <-
      rev(colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99))
    else
      my_palette <-
      colorRampPalette(brewer.pal(9, input$selectPlotHierSparPalette))(n = 99)
    
    
    col_labels <- get_leaves_branches_col(dend)
    col_labels <- col_labels[order(order.dendrogram(dend))]
    
    if (input$selectPlotHierSparDend == 1)
      assign("var.tmp", dend)
    else
      assign("var.tmp", FALSE)
    
    
    loc.colnames = paste0(colnames(dm.t), ifelse(sparsehc$ws == 0, "",
                                                 ifelse(
                                                   sparsehc$ws <= 0.1,
                                                   " *",
                                                   ifelse(sparsehc$ws <= 0.5, " **", " ***")
                                                 )))
    
    d3heatmap(
      dm.t,
      Rowv = var.tmp,
      dendrogram = ifelse(input$selectPlotHierSparDend == 1, "row", 'none'),
      trace = "none",
      revC = FALSE,
      na.rm = FALSE,
      margins = c(
        input$inPlotHierSparMarginX * 10,
        input$inPlotHierSparMarginY * 10
      ),
      colors = my_palette,
      na.col = grey(input$inPlotHierSparNAcolor),
      cexRow = input$inPlotHierSparFontY,
      cexCol = input$inPlotHierSparFontX,
      xaxis_height = input$inPlotHierSparMarginX * 10,
      yaxis_width = input$inPlotHierSparMarginY * 10,
      show_grid = TRUE,
      #labRow = rownames(dm.t),
      labCol = loc.colnames
    )
  })
dmattek's avatar
Mod:  
dmattek committed
1227 1228
  
  #callModule(clustBay, 'TabClustBay', data4clust)
1229
  
dmattek's avatar
dmattek committed
1230
})