server.R 27 KB
Newer Older
dmattek's avatar
dmattek committed
1
#
dmattek's avatar
dmattek committed
2 3 4 5
# Time Course Inspector: Shiny app for plotting time series data
# Author: Maciej Dobrzynski
#
# This is the server logic for a Shiny web application.
dmattek's avatar
dmattek committed
6 7 8 9
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
dmattek's avatar
dmattek committed
10 11
library(shinyBS) # for tooltips
library(shinycssloaders) # for loader animations
dmattek's avatar
dmattek committed
12 13
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
15 16 17
library(plotly) # interactive plot
library(DT) # interactive tables

dmattek's avatar
dmattek committed
18
library(dendextend) # for color_branches
19
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
20 21
library(RColorBrewer)
library(scales) # for percentages on y scale
dmattek's avatar
dmattek committed
22
library(ggthemes) # nice colour palettes
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
23 24

library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
Added:  
dmattek committed
25 26
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
27 28 29 30
library(robust) # for robust linear regression
library(MASS)
library(pracma) # for trapz

dmattek's avatar
dmattek committed
31

32
# Global parameters ----
dmattek's avatar
dmattek committed
33
# change to increase the limit of the upload file size
dmattek's avatar
Added:  
dmattek committed
34
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
35

dmattek's avatar
dmattek committed
36 37 38
# colour of loader spinner (shinycssloaders)
options(spinner.color="#00A8AA")

dmattek's avatar
dmattek committed
39
# Server logic ----
dmattek's avatar
dmattek committed
40
shinyServer(function(input, output, session) {
41
  useShinyjs()
dmattek's avatar
dmattek committed
42
  
43
  # This is only set at session start
dmattek's avatar
dmattek committed
44
  # We use this as a way to determine which input was
45 46
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
dmattek's avatar
dmattek committed
47 48 49
    # The value of actionButton is the number of times the button is pressed
    dataGen1        = isolate(input$inDataGen1),
    dataLoadNuc     = isolate(input$inButLoadNuc),
50 51
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
52
  )
dmattek's avatar
dmattek committed
53 54 55 56 57 58 59 60 61

  nCellsCounter <- reactiveValues(
    nCellsOrig = 0,
    nCellsAfterOutlierTrim = 0
  )
    
  myReactVals = reactiveValues(
    outlierIDs = NULL
  )
dmattek's avatar
dmattek committed
62
  
dmattek's avatar
dmattek committed
63
  # UI-side-panel-data-load ----
dmattek's avatar
dmattek committed
64
  
dmattek's avatar
dmattek committed
65
  # Generate random dataset
66
  dataGen1 <- eventReactive(input$inDataGen1, {
67
    if (DEB)
68
      cat("server:dataGen1\n")
69
    
dmattek's avatar
dmattek committed
70
    return(LOCgenTraj(in.nwells = 3, in.addout = 3))
71 72
  })
  
dmattek's avatar
dmattek committed
73
  # Load main data file
74
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
75
    if (DEB)
76
      cat("server:dataLoadNuc\n")
77

78 79 80 81 82 83 84
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
85
      return(fread(locFilePath, strip.white = T))
86 87 88
    }
  })
  
dmattek's avatar
dmattek committed
89 90 91 92
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
  })
93

dmattek's avatar
dmattek committed
94
  # Load data with trajectories to remove
95
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
96
    if (DEB)
97
      cat(file = stdout(), "server:dataLoadTrajRem\n")
98
    
99 100 101 102 103 104 105 106 107 108
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
109
  
dmattek's avatar
dmattek committed
110
  # Load data with stimulation pattern
111
  dataLoadStim <- eventReactive(input$inButLoadStim, {
112
    if (DEB)
113
      cat(file = stdout(), "server:dataLoadStim\n")
114
    
115 116 117 118 119 120 121 122 123 124 125 126
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:  
dmattek committed
127 128
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
129
    if (DEB)
130
      cat(file = stdout(), 'server:uiFileLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
131 132 133 134
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
135
        'Select file and press "Load Data"',
dmattek's avatar
Added:  
dmattek committed
136 137 138 139 140
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
141
    if (DEB)
142
      cat(file = stdout(), 'server:uiButLoadTrajRem\n')
dmattek's avatar
Added:  
dmattek committed
143 144 145 146 147
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

148 149
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
150
    if (DEB)
151
      cat(file = stdout(), 'server:uiFileLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
152
    
153 154 155
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
156
        'Select file and press "Load Data"',
157 158 159 160 161
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
162
    if (DEB)
163
      cat(file = stdout(), 'server:uiButLoadStim\n')
dmattek's avatar
Added:  
dmattek committed
164
    
165 166
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:  
dmattek committed
167 168
  })
  
169

dmattek's avatar
dmattek committed
170
  
dmattek's avatar
dmattek committed
171
  # UI-side-panel-column-selection ----
dmattek's avatar
dmattek committed
172
  output$varSelTrackLabel = renderUI({
173
    if (DEB)
174
      cat(file = stdout(), 'server:varSelTrackLabel\n')
175
    
dmattek's avatar
dmattek committed
176
    locCols = getDataNucCols()
177
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
178 179 180
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
181
      'Select ID:',
dmattek's avatar
dmattek committed
182 183 184 185 186 187 188
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
189
    if (DEB)
190
      cat(file = stdout(), 'server:varSelTime\n')
191
    
dmattek's avatar
dmattek committed
192
    locCols = getDataNucCols()
193
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
194 195 196
    
    selectInput(
      'inSelTime',
197
      'Select time column:',
dmattek's avatar
dmattek committed
198 199 200 201 202
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
203 204

  output$varSelTimeFreq = renderUI({
205
    if (DEB)
206
      cat(file = stdout(), 'server:varSelTimeFreq\n')
207
    
208 209 210
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
dmattek's avatar
dmattek committed
211
        'Interval between two time points:',
212 213 214 215 216 217
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
218
  })
dmattek's avatar
dmattek committed
219
  
dmattek's avatar
dmattek committed
220
  # This is the main field to select plot facet grouping
dmattek's avatar
dmattek committed
221
  # It's typically a column with the entire experimental description,
dmattek's avatar
dmattek committed
222 223
  # e.g.1 Stim_All_Ch or Stim_All_S.
  # e.g.2 a combination of 3 columns called Stimulation_...
dmattek's avatar
dmattek committed
224
  output$varSelGroup = renderUI({
225
    if (DEB)
226
      cat(file = stdout(), 'server:varSelGroup\n')
dmattek's avatar
dmattek committed
227
    
dmattek's avatar
dmattek committed
228 229 230 231 232
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
233
        locColSel = locCols[grep('(G|g)roup|(S|s)tim|(S|s)timulation|(S|s)ite', locCols)[1]]
234 235

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
236 237
        selectInput(
          'inSelGroup',
238
          'Select columns for plot grouping:',
dmattek's avatar
dmattek committed
239 240 241 242 243
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
244 245 246 247
      }
    }
  })
  
248 249
  # UI for selecting grouping to add to track ID to make 
  # the track ID unique across entire dataset
dmattek's avatar
dmattek committed
250
  output$varSelSite = renderUI({
251
    if (DEB)
252
      cat(file = stdout(), 'server:varSelSite\n')
dmattek's avatar
dmattek committed
253
    
254
    if (input$chBtrackUni) {
dmattek's avatar
Added:  
dmattek committed
255
      locCols = getDataNucCols()
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
256
      locColSel = locCols[grep('(S|s)ite|(S|s)eries|(F|f)ov|(G|g)roup', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:  
dmattek committed
257 258 259
      
      selectInput(
        'inSelSite',
260
        'Select grouping columns to add to track label:',
dmattek's avatar
Added:  
dmattek committed
261 262
        locCols,
        width = '100%',
263 264
        selected = locColSel,
        multiple = T
dmattek's avatar
Added:  
dmattek committed
265 266
      )
    }
dmattek's avatar
dmattek committed
267 268 269 270
  })
  
  
  output$varSelMeas1 = renderUI({
271
    if (DEB)
272
      cat(file = stdout(), 'server:varSelMeas1\n')
dmattek's avatar
dmattek committed
273 274 275
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
276
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
277

dmattek's avatar
dmattek committed
278 279
      selectInput(
        'inSelMeas1',
280
        'Select 1st meas.:',
dmattek's avatar
dmattek committed
281 282 283 284 285 286 287 288 289
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
290
    if (DEB)
291
      cat(file = stdout(), 'server:varSelMeas2\n')
292
    
dmattek's avatar
dmattek committed
293 294 295 296
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
297
      locColSel = locCols[grep('(R|r)atio|(I|i)ntensity|(Y|y)|(M|m)eas', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
298

dmattek's avatar
dmattek committed
299 300
      selectInput(
        'inSelMeas2',
301
        'Select 2nd meas.',
dmattek's avatar
dmattek committed
302 303 304 305 306 307 308
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
309
  # UI-side-panel-trim x-axis (time) ----
dmattek's avatar
dmattek committed
310
  output$uiSlTimeTrim = renderUI({
311
    if (DEB)
312
      cat(file = stdout(), 'server:uiSlTimeTrim\n')
dmattek's avatar
dmattek committed
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
334
  
dmattek's avatar
dmattek committed
335
  # UI-side-panel-normalization ----
336 337 338 339
  
  # select normalisation method
  # - fold-change calculates fold change with respect to the mean
  # - z-score calculates z-score of the selected regione of the time series
dmattek's avatar
dmattek committed
340
  output$uiChBnorm = renderUI({
341
    if (DEB)
342
      cat(file = stdout(), 'server:uiChBnorm\n')
dmattek's avatar
dmattek committed
343 344
    
    if (input$chBnorm) {
345
      tagList(
dmattek's avatar
dmattek committed
346 347 348
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
349 350 351 352
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score'),
        width = "40%"
      ),
      bsTooltip('rBnormMeth', help.text.short[11], placement = "right", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
353 354 355 356
      )
    }
  })
  
357
  # select the region of the time series for normalisation
dmattek's avatar
dmattek committed
358
  output$uiSlNorm = renderUI({
359
    if (DEB)
360
      cat(file = stdout(), 'server:uiSlNorm\n')
dmattek's avatar
dmattek committed
361 362 363 364 365 366 367 368 369 370
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
371
      tagList(
dmattek's avatar
dmattek committed
372 373
      sliderInput(
        'slNormRtMinMax',
374
        label = 'Time span',
dmattek's avatar
dmattek committed
375 376
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
377 378
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
379 380
      ),
      bsTooltip('slNormRtMinMax', help.text.short[12], placement = "right", trigger = "hover", options = NULL)
dmattek's avatar
dmattek committed
381 382 383 384
      )
    }
  })
  
385
  # use robust stats (median instead of mean, mad instead of sd)
dmattek's avatar
dmattek committed
386
  output$uiChBnormRobust = renderUI({
387
    if (DEB)
388
      cat(file = stdout(), 'server:uiChBnormRobust\n')
dmattek's avatar
dmattek committed
389 390
    
    if (input$chBnorm) {
391
      tagList(
dmattek's avatar
dmattek committed
392 393
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
394 395 396 397
                    FALSE, 
                    width = "40%"),
      bsTooltip('chBnormRobust', help.text.short[13], placement = "right", trigger = "hover", options = NULL)
      )
dmattek's avatar
dmattek committed
398 399 400
    }
  })
  
401
  # choose whether normalisation should be calculated for the entire dataset, group, or trajectory
dmattek's avatar
dmattek committed
402
  output$uiChBnormGroup = renderUI({
403
    if (DEB)
404
      cat(file = stdout(), 'server:uiChBnormGroup\n')
dmattek's avatar
dmattek committed
405 406
    
    if (input$chBnorm) {
407
      tagList(
dmattek's avatar
dmattek committed
408
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:  
dmattek committed
409
                   label = 'Normalisation grouping',
410 411 412 413
                   choices = list('Entire dataset' = 'none', 'Per group' = 'group', 'Per trajectory' = 'id'), 
                   width = "40%"),
      bsTooltip('chBnormGroup', help.text.short[14], placement = "right", trigger = "hover", options = NULL)
      )
dmattek's avatar
dmattek committed
414 415 416 417
    }
  })
  
  
dmattek's avatar
dmattek committed
418
  
dmattek's avatar
dmattek committed
419

dmattek's avatar
dmattek committed
420
  # Processing-data ----
dmattek's avatar
dmattek committed
421
  
422 423 424 425 426 427 428 429 430 431 432 433
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
434
    # Don't wrap around if(DEB) !!!
435
    cat(
436
      "server:dataInBoth\n   inGen1: ",
437
      locInGen1,
438
      "      prev=",
439
      isolate(counter$dataGen1),
440
      "\n   inDataNuc: ",
441 442 443 444 445 446 447 448 449 450
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
451
    # isolate the checks of the counter reactiveValues
452 453
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
454
      cat("server:dataInBoth if inDataGen1\n")
455 456 457 458
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
459
      cat("server:dataInBoth if inDataLoadNuc\n")
460
      dm = dataLoadNuc()
461 462 463 464 465 466 467 468 469 470 471 472 473
      
      # convert to long format if radio box set to "wide"
      # the input data in long format should contain:
      # - the first row with a header: ID, 1, 2, 3...
      # - consecutive rows with time series, where columns are time points
      if (input$inRbutLongWide == 1) {
        # long to wide
        dm = melt(dm, id.vars = names(dm)[1], variable.name = COLRT, value.name = COLY)

        # convert column names with time points to a number
        dm[, (COLRT) := as.numeric(levels(get(COLRT)))[get(COLRT)]]
      }
      
474 475 476
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
477
      cat("server:dataInBoth else\n")
478 479 480 481 482 483
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
484
  getDataNucCols <- reactive({
485
    if (DEB)
486
      cat(file = stdout(), 'server:getDataNucCols: in\n')
487
    
488 489 490 491 492 493 494 495 496 497
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
498
    if (DEB)
499
      cat(file = stdout(), 'server:dataMod\n')
500
    
501 502
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
503
    if (is.null(loc.dt))
504 505
      return(NULL)
    
506
    if (input$chBtrackUni) {
507
      # create unique track ID based on columns specified in input$inSelSite field and combine with input$inSelTrackLabel
508
      loc.dt[, (COLIDUNI) := do.call(paste, c(.SD, sep = "_")), .SDcols = c(input$inSelSite, input$inSelTrackLabel) ]
dmattek's avatar
Added:  
dmattek committed
509
    } else {
510
      # stay with track ID provided in the loaded dataset; has to be unique
511
      loc.dt[, (COLIDUNI) := get(input$inSelTrackLabel)]
dmattek's avatar
Added:  
dmattek committed
512 513
    }
    
dmattek's avatar
dmattek committed
514
    
dmattek's avatar
Added:  
dmattek committed
515 516 517
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
518
      if (DEB)
519
        cat(file = stdout(), 'server:dataMod: trajRem not NULL\n')
dmattek's avatar
Added:  
dmattek committed
520 521
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
522
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:  
dmattek committed
523 524
    }
    
525 526 527
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
528 529 530
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
531
    if (DEB)
532
      cat(file = stdout(), 'server:getDataTrackObjLabUni\n')
533
    
dmattek's avatar
dmattek committed
534
    loc.dt = dataMod()
535
    
dmattek's avatar
dmattek committed
536 537 538 539
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
540 541
  })
  
dmattek's avatar
Mod:  
dmattek committed
542
  
dmattek's avatar
dmattek committed
543 544 545
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
546
  getDataTpts <- reactive({
547
    if (DEB)
548
      cat(file = stdout(), 'server:getDataTpts\n')
549
    
dmattek's avatar
dmattek committed
550
    loc.dt = dataMod()
551
    
dmattek's avatar
dmattek committed
552 553 554 555
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
556 557
  })
  
dmattek's avatar
dmattek committed
558
  
559 560 561
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
562
  #    realtime - selected from input
dmattek's avatar
dmattek committed
563
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
564
  #               (can be a single column or result of an operation on two cols)
565 566
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
567 568
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
569 570 571 572
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
573
  data4trajPlot <- reactive({
574
    if (DEB)
575
      cat(file = stdout(), 'server:data4trajPlot\n')
576 577
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
578
    if (is.null(loc.dt))
579 580
      return(NULL)
    
581
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
582
    if (input$inSelMath == '')
583 584 585 586 587 588
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
589
    # create expression for 'group' column
590 591
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
592 593 594 595 596 597 598 599 600 601 602
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
603
    
dmattek's avatar
dmattek committed
604 605

    # column name with time
606 607
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
608 609
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
610
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
611
    
dmattek's avatar
Added:  
dmattek committed
612 613
    
    # Find column names with position
614
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
615
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:  
dmattek committed
616
    
617
    if (DEB)
618
      cat('server:data4trajPlot:\n   Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
619 620
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:  
dmattek committed
621 622 623 624
      locPos = TRUE
    else
      locPos = FALSE
    
625 626 627 628
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
629 630 631 632 633 634
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
635
      loc.s.objnum = loc.s.objnum[1]
636
      locObjNum = TRUE
dmattek's avatar
dmattek committed
637
    }
638 639
    
    
640 641
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
dmattek's avatar
dmattek committed
642
    if (sum(names(loc.dt) %in% COLIN) > 0)
643 644 645 646 647 648
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
dmattek's avatar
dmattek committed
649 650 651 652
    s.colexpr = paste0('.(',  COLY, ' = ', loc.s.y,
                       ', ', COLID, ' = ', COLIDUNI, 
                       ', ', COLGR, ' = ', loc.s.gr,
                       ', ', COLRT, ' = ', loc.s.rt)
653 654
    
    # account for the presence of 'mid.in' column in uploaded data
dmattek's avatar
dmattek committed
655
    # future: choose this column in UI
656 657
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
658
                         ',', COLIN, ' = ', COLIN)
659 660 661 662
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
663 664
                         ', ', COLPOSX, '= ', loc.s.pos.x,
                         ', ', COLPOSY, '= ', loc.s.pos.y)
665 666 667 668
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
dmattek's avatar
dmattek committed
669
                         ', ', COLOBJN, ' = ', loc.s.objnum)
670 671 672 673 674 675 676
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
677 678 679 680 681
    # Convert track ID to a factor.
    # This is necessary for, e.g. merging data with cluster assignments.
    # If input dataset has track ID as a number, such a merge would fail.
    loc.out[, (COLID) := as.factor(get(COLID))]
    
682 683 684 685 686 687
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
dmattek's avatar
dmattek committed
688
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', get(COLIN))]
689
      else
dmattek's avatar
Mod:  
dmattek committed
690
        # add a column with status of track selection
dmattek's avatar
dmattek committed
691
        loc.out[, mid.in := ifelse(get(COLID) %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
692
    }
693
      
dmattek's avatar
dmattek committed
694

695
    ## Interpolate missing data and NA data points
696
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
697
    # Tracks are interpolated only within first and last time points of every track id
698 699
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
700
    # Therefore, we cannot rely on that info to get time frequency; user must provide this number!
701
    
702
    setkeyv(loc.out, c(COLGR, COLID, COLRT))
703

704 705
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
dmattek's avatar
dmattek committed
706
      loc.out = loc.out[setkeyv(loc.out[, .(seq(min(get(COLRT), na.rm = T), max(get(COLRT), na.rm = T), input$inSelTimeFreq)), by = c(COLGR, COLID)], c(COLGR, COLID, 'V1'))]
707 708
      
      # x-check: print all rows with NA's
709
      if (DEB) {
710
        cat(file = stdout(), 'server:data4trajPlot: Rows with NAs:\n')
711 712
        print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      }
713 714 715 716
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
dmattek's avatar
dmattek committed
717
        s.cols = c(COLY, COLPOSX, COLPOSY)
718
      else
dmattek's avatar
dmattek committed
719
        s.cols = c(COLY)
720
      
721 722 723 724 725 726 727 728 729 730 731 732
      # Interpolated columns should be of type numeric (float)
      # This is to ensure that interpolated columns are of porper type.
      
      # Apparently the loop is faster than lapply+SDcols
      for(col in s.cols) {
        #loc.out[, (col) := as.numeric(get(col))]
        data.table::set(loc.out, j = col, value = as.numeric(loc.out[[col]]))

        loc.out[, (col) := na.interpolation(get(col)), by = c(COLID)]        
      }
      
      # loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = c(COLID), .SDcols = s.cols]
733 734 735 736 737 738 739 740 741 742 743 744 745 746
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:  
dmattek committed
747
    
748
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
749
    if(input$chBtimeTrim) {
dmattek's avatar
dmattek committed
750
      loc.out = loc.out[get(COLRT) >= input$slTimeTrim[[1]] & get(COLRT) <= input$slTimeTrim[[2]] ]
dmattek's avatar
dmattek committed
751
    }
dmattek's avatar
dmattek committed
752
    
753
    ## Normalization
dmattek's avatar
dmattek committed
754
    # F-n normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
755
    if (input$chBnorm) {
dmattek's avatar
dmattek committed
756
      loc.out = LOCnormTraj(
dmattek's avatar
dmattek committed
757
        in.dt = loc.out,
dmattek's avatar
dmattek committed
758 759
        in.meas.col = COLY,
        in.rt.col = COLRT,
dmattek's avatar
dmattek committed
760 761 762 763 764 765 766
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
767 768
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
Maciej Dobrzynski's avatar
Maciej Dobrzynski committed
769 770
      
      loc.out[, c(COLY) := NULL]
dmattek's avatar
dmattek committed
771
      setnames(loc.out, 'y.norm', COLY)
dmattek's avatar
dmattek committed
772 773 774
    }
    
    return(loc.out)
dmattek's avatar
dmattek committed
775 776
  })
  
dmattek's avatar
dmattek committed
777 778 779 780 781 782
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
783
    if (DEB)  
784
      cat(file = stdout(), 'server:data4clust\n')
dmattek's avatar
dmattek committed
785
    
dmattek's avatar
dmattek committed
786
    loc.dt = data4trajPlotNoOut()
dmattek's avatar
dmattek committed
787 788 789
    if (is.null(loc.dt))
      return(NULL)
    
790 791 792 793
    # convert from long to wide format
    loc.dt.wide = dcast(loc.dt, 
                    reformulate(response = COLID, termlabels = COLRT), 
                    value.var = COLY)
dmattek's avatar
dmattek committed
794
    
795 796
    # store row names for later
    loc.rownames = loc.dt.wide[[COLID]]
dmattek's avatar
Mod:  
dmattek committed
797
    
798 799
    # omit first column that contains row names
    loc.m.out = as.matrix(loc.dt.wide[, -1])
dmattek's avatar
Added:  
dmattek committed
800
    
801 802
    # assign row names to the matrix
    rownames(loc.m.out) = loc.rownames
dmattek's avatar
Added:  
dmattek committed
803
    
804
    return(loc.m.out)
dmattek's avatar
Mod:  
dmattek committed
805
  }) 
dmattek's avatar
dmattek committed
806
  
dmattek's avatar
dmattek committed
807
  
808 809 810
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
811
    if (DEB)  
812
      cat(file = stdout(), 'server:data4stimPlot\n')
813 814
    
    if (input$chBstim) {
815
      if (DEB)  
816
        cat(file = stdout(), 'server:data4stimPlot: stim not NULL\n')
817 818 819 820
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
821
      if (DEB)  
822
        cat(file = stdout(), 'server:data4stimPlot: stim is NULL\n')
823
      
824 825 826 827
      return(NULL)
    }
  })
  
dmattek's avatar
dmattek committed
828 829 830 831 832 833 834 835 836 837
  # prepare y-axis label in time series plots, depending on UI setting
  
  createYaxisLabel = reactive({
    locLabel = input$inSelMeas1
    
    
    
    return(locLabel)
  })
  
dmattek's avatar
Added:  
dmattek committed
838 839 840
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
dmattek's avatar
dmattek committed
841
    filename = FCSVTCCLEAN,
dmattek's avatar
Added:  
dmattek committed
842
    content = function(file) {
dmattek's avatar
dmattek committed
843
      write.csv(data4trajPlotNoOut(), file, row.names = FALSE)
dmattek's avatar
Added:  
dmattek committed
844 845 846
    }
  )
  
dmattek's avatar
dmattek committed
847 848 849
  # Plotting-trajectories ----

  # UI for selecting trajectories
850
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
851
  output$varSelHighlight = renderUI({
852
    if (DEB)  
853
      cat(file = stdout(), 'server:varSelHighlight\n')
dmattek's avatar
dmattek committed
854
    
dmattek's avatar
dmattek committed
855 856 857
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
858
    
dmattek's avatar
dmattek committed
859
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
860
    if (!is.null(loc.v)) {
861
      selectInput(
dmattek's avatar
dmattek committed
862
        'inSelHighlight',
863
        'Select one or more trajectories:',
dmattek's avatar
dmattek committed
864
        loc.v,
865
        width = '100%',
dmattek's avatar
dmattek committed
866
        multiple = TRUE
867
      )
dmattek's avatar
dmattek committed
868 869 870
    }
  })
  
dmattek's avatar
dmattek committed
871 872 873
  # Taking out outliers 
  data4trajPlotNoOut = callModule(modSelOutliers, 'returnOutlierIDs', data4trajPlot)
  
dmattek's avatar
dmattek committed
874 875
  # Trajectory plotting - ribbon
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
dmattek's avatar
dmattek committed
876
             in.data = data4trajPlotNoOut,
dmattek's avatar
dmattek committed
877
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
878
             in.fname = function() return(FPDFTCMEAN))
dmattek's avatar
dmattek committed
879
  
dmattek's avatar
dmattek committed
880
  # Trajectory plotting - individual
dmattek's avatar
dmattek committed
881
  callModule(modTrajPlot, 'modTrajPlot', 
dmattek's avatar
dmattek committed
882
             in.data = data4trajPlotNoOut, 
dmattek's avatar
dmattek committed
883
             in.data.stim = data4stimPlot,
dmattek's avatar
dmattek committed
884 885
             in.fname = function() {return(FPDFTCSINGLE)},
             in.ylab = createYaxisLabel)
dmattek's avatar
dmattek committed
886
  
887 888 889 890 891
  # Trajectory plotting - PSD
  callModule(modPSDPlot, 'modPSDPlot',
             in.data = data4trajPlotNoOut,
             in.fname = function() {return(FPDFTCPSD)})
  
dmattek's avatar
dmattek committed
892 893
  
  # Tabs ----
894
  ###### AUC calculation and plotting
dmattek's avatar
dmattek committed
895
  callModule(tabAUCplot, 'tabAUC', data4trajPlotNoOut, in.fname = function() return(FPDFBOXAUC))
dmattek's avatar
Added:  
dmattek committed
896
  
dmattek's avatar
Added:  
dmattek committed
897
  ###### Box-plot
dmattek's avatar
dmattek committed
898
  callModule(tabDistPlot, 'tabDistPlot', data4trajPlotNoOut, in.fname = function() return(FPDFBOXTP))
dmattek's avatar
dmattek committed
899
  
dmattek's avatar
dmattek committed
900
  ###### Scatter plot
dmattek's avatar
dmattek committed
901
  callModule(tabScatterPlot, 'tabScatter', data4trajPlotNoOut, in.fname = function() return(FPDFSCATTER))
dmattek's avatar
dmattek committed
902
  
dmattek's avatar
dmattek committed
903
  ##### Hierarchical clustering
dmattek's avatar
dmattek committed
904
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
905 906
  
  ##### Sparse hierarchical clustering using sparcl
dmattek's avatar
dmattek committed
907
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlotNoOut, data4stimPlot)
dmattek's avatar
dmattek committed
908
})