server.R 25.9 KB
Newer Older
dmattek's avatar
dmattek committed
1

2

dmattek's avatar
dmattek committed
3

dmattek's avatar
dmattek committed
4
5
6
7
8
9
10
11
12
13
# This is the server logic for a Shiny web application.
# You can find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com
#

library(shiny)
library(shinyjs) #http://deanattali.com/shinyjs/
library(data.table)
library(ggplot2)
dmattek's avatar
dmattek committed
14
library(gplots) # for heatmap.2
dmattek's avatar
dmattek committed
15
library(plotly)
dmattek's avatar
dmattek committed
16
17
library(d3heatmap) # for interactive heatmap
library(dendextend) # for color_branches
18
library(colorspace) # for palettes (used to colour dendrogram)
dmattek's avatar
dmattek committed
19
library(RColorBrewer)
20
# sparcl temporarily unavailable on CRAN
dmattek's avatar
dmattek committed
21
library(sparcl) # sparse hierarchical and k-means
dmattek's avatar
dmattek committed
22
library(scales) # for percentages on y scale
dmattek's avatar
Added:    
dmattek committed
23
24
library(dtw) # for dynamic time warping
library(imputeTS) # for interpolating NAs
25
library(tca) # for time series manipulatiom, e.g. normTraj, genTraj, plotTrajRibbon
dmattek's avatar
dmattek committed
26

27
# increase file upload limit
dmattek's avatar
Added:    
dmattek committed
28
options(shiny.maxRequestSize = 200 * 1024 ^ 2)
dmattek's avatar
dmattek committed
29

dmattek's avatar
dmattek committed
30
shinyServer(function(input, output, session) {
31
  useShinyjs()
dmattek's avatar
dmattek committed
32
  
33
34
35
36
37
38
  # This is only set at session start
  # we use this as a way to determine which input was
  # clicked in the dataInBoth reactive
  counter <- reactiveValues(
    # The value of inDataGen1,2 actionButton is the number of times they were pressed
    dataGen1     = isolate(input$inDataGen1),
dmattek's avatar
Added:    
dmattek committed
39
    dataLoadNuc  = isolate(input$inButLoadNuc),
40
41
    dataLoadTrajRem = isolate(input$inButLoadTrajRem),
    dataLoadStim    = isolate(input$inButLoadStim)
dmattek's avatar
dmattek committed
42
43
  )
  
dmattek's avatar
dmattek committed
44
45
46
  ####
  ## UI for side panel
  
dmattek's avatar
dmattek committed
47
  # FILE LOAD
48
49
50
51
52
53
54
55
56
57
  # This button will reset the inFileLoad
  observeEvent(input$inButReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #reset("inButLoadStim")  # reset is a shinyjs function
  })
  
  # generate random dataset 1
  dataGen1 <- eventReactive(input$inDataGen1, {
    cat("dataGen1\n")
    
58
    return(tca::genTraj(in.nwells = 3))
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  })
  
  # load main data file
  dataLoadNuc <- eventReactive(input$inButLoadNuc, {
    cat("dataLoadNuc\n")
    locFilePath = input$inFileLoadNuc$datapath
    
    counter$dataLoadNuc <- input$inButLoadNuc - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
dmattek's avatar
dmattek committed
75
76
77
78
79
80
  # This button will reset the inFileLoad
  observeEvent(input$butReset, {
    reset("inFileLoadNuc")  # reset is a shinyjs function
    #    reset("inFileStimLoad")  # reset is a shinyjs function
    
  })
81
82
83
84
85
86
87
88
89
90
91
92
93
94

  # load data with trajectories to remove
  dataLoadTrajRem <- eventReactive(input$inButLoadTrajRem, {
    cat(file = stderr(), "dataLoadTrajRem\n")
    locFilePath = input$inFileLoadTrajRem$datapath
    
    counter$dataLoadTrajRem <- input$inButLoadTrajRem - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
dmattek's avatar
dmattek committed
95
  
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  # load data with stimulation pattern
  dataLoadStim <- eventReactive(input$inButLoadStim, {
    cat(file = stderr(), "dataLoadStim\n")
    locFilePath = input$inFileLoadStim$datapath
    
    counter$dataLoadStim <- input$inButLoadStim - 1
    
    if (is.null(locFilePath) || locFilePath == '')
      return(NULL)
    else {
      return(fread(locFilePath))
    }
  })
  
    
dmattek's avatar
Added:    
dmattek committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  # UI for loading csv with cell IDs for trajectory removal
  output$uiFileLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiFileLoadTrajRem\n')
    
    if(input$chBtrajRem) 
      fileInput(
        'inFileLoadTrajRem',
        'Select data file (e.g. badTraj.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadTrajRem = renderUI({
    cat(file = stderr(), 'UI uiButLoadTrajRem\n')
    
    if(input$chBtrajRem)
      actionButton("inButLoadTrajRem", "Load Data")
  })

130
131
132
  # UI for loading csv with stimulation pattern
  output$uiFileLoadStim = renderUI({
    cat(file = stderr(), 'UI uiFileLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
133
    
134
135
136
137
138
139
140
141
142
143
    if(input$chBstim) 
      fileInput(
        'inFileLoadStim',
        'Select data file (e.g. stim.csv) and press "Load Data"',
        accept = c('text/csv', 'text/comma-separated-values,text/plain')
      )
  })
  
  output$uiButLoadStim = renderUI({
    cat(file = stderr(), 'UI uiButLoadStim\n')
dmattek's avatar
Added:    
dmattek committed
144
    
145
146
    if(input$chBstim)
      actionButton("inButLoadStim", "Load Data")
dmattek's avatar
Added:    
dmattek committed
147
148
  })
  
149

dmattek's avatar
dmattek committed
150
151
  
  # COLUMN SELECTION
dmattek's avatar
dmattek committed
152
153
154
  output$varSelTrackLabel = renderUI({
    cat(file = stderr(), 'UI varSelTrackLabel\n')
    locCols = getDataNucCols()
155
    locColSel = locCols[grep('(T|t)rack|ID|id', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches TrackLabel, tracklabel, Track Label etc
dmattek's avatar
dmattek committed
156
157
158
    
    selectInput(
      'inSelTrackLabel',
dmattek's avatar
dmattek committed
159
      'Select Track Label (e.g. objNuc_TrackObjects_Label):',
dmattek's avatar
dmattek committed
160
161
162
163
164
165
166
167
168
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
  
  output$varSelTime = renderUI({
    cat(file = stderr(), 'UI varSelTime\n')
    locCols = getDataNucCols()
169
    locColSel = locCols[grep('(T|t)ime|Metadata_T', locCols)[1]] # index 1 at the end in case more matches; select 1st; matches RealTime, realtime, real time, etc.
dmattek's avatar
dmattek committed
170
171
172
    
    selectInput(
      'inSelTime',
dmattek's avatar
dmattek committed
173
      'Select time column (e.g. Metadata_T, RealTime):',
dmattek's avatar
dmattek committed
174
175
176
177
178
      locCols,
      width = '100%',
      selected = locColSel
    )
  })
179
180
181
182

  output$varSelTimeFreq = renderUI({
    cat(file = stderr(), 'UI varSelTimeFreq\n')
    
183
184
185
186
187
188
189
190
191
192
    if (input$chBtrajInter) {
      numericInput(
        'inSelTimeFreq',
        'Provide time frequency:',
        min = 1,
        step = 1,
        width = '100%',
        value = 1
      )
    }
193
  })
dmattek's avatar
dmattek committed
194
195
196
197
198
199
200
201
  
  # This is main field to select plot facet grouping
  # It's typically a column with the entire experimental description,
  # e.g. in Yannick's case it's Stim_All_Ch or Stim_All_S.
  # In Coralie's case it's a combination of 3 columns called Stimulation_...
  output$varSelGroup = renderUI({
    cat(file = stderr(), 'UI varSelGroup\n')
    
dmattek's avatar
dmattek committed
202
203
204
205
206
    if (input$chBgroup) {
      
      locCols = getDataNucCols()
      
      if (!is.null(locCols)) {
207
208
209
        locColSel = locCols[grep('(G|g)roup|(S|s)tim_All|(S|s)timulation|(S|s)ite', locCols)[1]]

        #cat('UI varSelGroup::locColSel ', locColSel, '\n')
dmattek's avatar
dmattek committed
210
211
212
213
214
215
216
217
        selectInput(
          'inSelGroup',
          'Select one or more facet groupings (e.g. Site, Well, Channel):',
          locCols,
          width = '100%',
          selected = locColSel,
          multiple = TRUE
        )
dmattek's avatar
dmattek committed
218
219
220
221
222
223
224
      }
    }
  })
  
  output$varSelSite = renderUI({
    cat(file = stderr(), 'UI varSelSite\n')
    
225
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
226
      locCols = getDataNucCols()
227
      locColSel = locCols[grep('(S|s)ite|(S|s)eries', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
Added:    
dmattek committed
228
229
230
231
232
233
234
235
236
      
      selectInput(
        'inSelSite',
        'Select FOV (e.g. Metadata_Site or Metadata_Series):',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
dmattek's avatar
dmattek committed
237
238
239
240
241
242
243
244
245
246
  })
  
  
  
  
  output$varSelMeas1 = renderUI({
    cat(file = stderr(), 'UI varSelMeas1\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols)) {
247
      locColSel = locCols[grep('objCyto_Intensity_MeanIntensity_imErkCor|(R|r)atio|(I|i)ntensity|y', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
248

dmattek's avatar
dmattek committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      selectInput(
        'inSelMeas1',
        'Select 1st measurement:',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
  
  output$varSelMeas2 = renderUI({
    cat(file = stderr(), 'UI varSelMeas2\n')
    locCols = getDataNucCols()
    
    if (!is.null(locCols) &&
        !(input$inSelMath %in% c('', '1 / '))) {
266
      locColSel = locCols[grep('objNuc_Intensity_MeanIntensity_imErkCor', locCols)[1]] # index 1 at the end in case more matches; select 1st
dmattek's avatar
dmattek committed
267

dmattek's avatar
dmattek committed
268
269
270
271
272
273
274
275
276
277
      selectInput(
        'inSelMeas2',
        'Select 2nd measurement',
        locCols,
        width = '100%',
        selected = locColSel
      )
    }
  })
  
dmattek's avatar
dmattek committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
  # UI for trimming x-axis (time)
  output$uiSlTimeTrim = renderUI({
    cat(file = stderr(), 'UI uiSlTimeTrim\n')
    
    if (input$chBtimeTrim) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slTimeTrim',
        label = 'Time range to include',
        min = locRTmin,
        max = locRTmax,
        value = c(locRTmin, locRTmax),
        step = 1
      )
      
    }
  })
dmattek's avatar
dmattek committed
302
  
dmattek's avatar
dmattek committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
  # UI for normalization
  
  output$uiChBnorm = renderUI({
    cat(file = stderr(), 'UI uiChBnorm\n')
    
    if (input$chBnorm) {
      radioButtons(
        'rBnormMeth',
        label = 'Select method',
        choices = list('fold-change' = 'mean', 'z-score' = 'z.score')
      )
    }
  })
  
  output$uiSlNorm = renderUI({
    cat(file = stderr(), 'UI uiSlNorm\n')
    
    if (input$chBnorm) {
      locTpts  = getDataTpts()
      
      if(is.null(locTpts))
        return(NULL)
      
      locRTmin = min(locTpts)
      locRTmax = max(locTpts)
      
      sliderInput(
        'slNormRtMinMax',
        label = 'Time range for norm.',
        min = locRTmin,
        max = locRTmax,
dmattek's avatar
dmattek committed
334
335
        value = c(locRTmin, 0.1 * locRTmax), 
        step = 1
dmattek's avatar
dmattek committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
      )
    }
  })
  
  output$uiChBnormRobust = renderUI({
    cat(file = stderr(), 'UI uiChBnormRobust\n')
    
    if (input$chBnorm) {
      checkboxInput('chBnormRobust',
                    label = 'Robust stats',
                    FALSE)
    }
  })
  
  output$uiChBnormGroup = renderUI({
    cat(file = stderr(), 'UI uiChBnormGroup\n')
    
    if (input$chBnorm) {
      radioButtons('chBnormGroup',
dmattek's avatar
Mod:    
dmattek committed
355
                   label = 'Normalisation grouping',
356
                   choices = list('Entire dataset' = 'none', 'Per facet' = 'group', 'Per trajectory' = 'id'))
dmattek's avatar
dmattek committed
357
358
359
360
    }
  })
  
  
dmattek's avatar
dmattek committed
361
362
363
364
365
  # UI for removing outliers
  output$uiSlOutliers = renderUI({
    cat(file = stderr(), 'UI uiSlOutliers\n')
    
    if (input$chBoutliers) {
dmattek's avatar
Mod:    
dmattek committed
366
      
dmattek's avatar
dmattek committed
367
368
369
370
371
      sliderInput(
        'slOutliersPerc',
        label = 'Percentage of middle data',
        min = 90,
        max = 100,
dmattek's avatar
Fixed:    
dmattek committed
372
        value = 99.5, 
dmattek's avatar
dmattek committed
373
374
        step = 0.1
      )
dmattek's avatar
dmattek committed
375
      
dmattek's avatar
Mod:    
dmattek committed
376
      
dmattek's avatar
dmattek committed
377
378
379
    }
  })
  
dmattek's avatar
dmattek committed
380
381
382
383
384
385
386
387
388
  output$uiTxtOutliers = renderUI({
    if (input$chBoutliers) {
      
      p("Total tracks")
      
    }
    
  })
  
dmattek's avatar
dmattek committed
389
  
dmattek's avatar
dmattek committed
390
391
392
  ####
  ## data processing
  
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
  dataInBoth <- reactive({
    # Without direct references to inDataGen1,2 and inFileLoad, inDataGen2
    #    does not trigger running this reactive once inDataGen1 is used.
    # This is one of the more nuanced areas of reactive programming in shiny
    #    due to the if else logic, it isn't fetched once inDataGen1 is available
    # The morale is use direct retrieval of inputs to guarantee they are available
    #    for if else logic checks!
    
    locInGen1 = input$inDataGen1
    locInLoadNuc = input$inButLoadNuc
    #locInLoadStim = input$inButLoadStim
    
    cat(
      "dataInBoth\ninGen1: ",
      locInGen1,
      "   prev=",
      isolate(counter$dataGen1),
      "\ninDataNuc: ",
      locInLoadNuc,
      "   prev=",
      isolate(counter$dataLoadNuc),
      # "\ninDataStim: ",
      # locInLoadStim,
      # "   prev=",
      # isolate(counter$dataLoadStim),
      "\n"
    )
    
    # isolate the checks of counter reactiveValues
    # as we set the values in this same reactive
    if (locInGen1 != isolate(counter$dataGen1)) {
      cat("dataInBoth if inDataGen1\n")
      dm = dataGen1()
      # no need to isolate updating the counter reactive values!
      counter$dataGen1 <- locInGen1
    } else if (locInLoadNuc != isolate(counter$dataLoadNuc)) {
      cat("dataInBoth if inDataLoadNuc\n")
      dm = dataLoadNuc()
      # no need to isolate updating the counter reactive values!
      counter$dataLoadNuc <- locInLoadNuc
    } else {
      cat("dataInBoth else\n")
      dm = NULL
    }
    return(dm)
  })
  
  # return column names of the main dt
dmattek's avatar
dmattek committed
441
  getDataNucCols <- reactive({
442
443
444
445
446
447
448
449
450
451
452
    cat(file = stderr(), 'getDataNucCols: in\n')
    loc.dt = dataInBoth()
    
    if (is.null(loc.dt))
      return(NULL)
    else
      return(colnames(loc.dt))
  })
  
  # return dt with an added column with unique track object label
  dataMod <- reactive({
dmattek's avatar
dmattek committed
453
    cat(file = stderr(), 'dataMod\n')
454
455
    loc.dt = dataInBoth()
    
dmattek's avatar
dmattek committed
456
    if (is.null(loc.dt))
457
458
      return(NULL)
    
459
    if (input$chBtrackUni) {
dmattek's avatar
Added:    
dmattek committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
      loc.types = lapply(loc.dt, class)
      if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer') & loc.types[[input$inSelSite]] %in% c('numeric', 'integer'))
      {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelTrackLabel]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%04d", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else if(loc.types[[input$inSelSite]] %in% c('numeric', 'integer')) {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%03d", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      } else {
        loc.dt[, trackObjectsLabelUni := paste(sprintf("%s", get(input$inSelSite)),
                                               sprintf("%s", get(input$inSelTrackLabel)),
                                               sep = "_")]
      }
dmattek's avatar
Added:    
dmattek committed
479
    } else {
dmattek's avatar
Added:    
dmattek committed
480
      loc.dt[, trackObjectsLabelUni := get(input$inSelTrackLabel)]
dmattek's avatar
Added:    
dmattek committed
481
482
    }
    
dmattek's avatar
dmattek committed
483
    
dmattek's avatar
Added:    
dmattek committed
484
485
486
487
488
489
    # remove trajectories based on uploaded csv

    if (input$chBtrajRem) {
      cat(file = stderr(), 'dataMod: trajRem not NULL\n')
      
      loc.dt.rem = dataLoadTrajRem()
dmattek's avatar
dmattek committed
490
      loc.dt = loc.dt[!(trackObjectsLabelUni %in% loc.dt.rem[[1]])]
dmattek's avatar
Added:    
dmattek committed
491
492
    }
    
493
494
495
    return(loc.dt)
  })
  
dmattek's avatar
dmattek committed
496
497
498
499
500
  # return all unique track object labels (created in dataMod)
  # This will be used to display in UI for trajectory highlighting
  getDataTrackObjLabUni <- reactive({
    cat(file = stderr(), 'getDataTrackObjLabUni\n')
    loc.dt = dataMod()
501
    
dmattek's avatar
dmattek committed
502
503
504
505
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt$trackObjectsLabelUni))
506
507
  })
  
dmattek's avatar
Mod:    
dmattek committed
508
  
dmattek's avatar
dmattek committed
509
510
511
  # return all unique time points (real time)
  # This will be used to display in UI for box-plot
  # These timepoints are from the original dt and aren't affected by trimming of x-axis
dmattek's avatar
dmattek committed
512
513
514
  getDataTpts <- reactive({
    cat(file = stderr(), 'getDataTpts\n')
    loc.dt = dataMod()
515
    
dmattek's avatar
dmattek committed
516
517
518
519
    if (is.null(loc.dt))
      return(NULL)
    else
      return(unique(loc.dt[[input$inSelTime]]))
520
521
  })
  
dmattek's avatar
dmattek committed
522
  
523
524
525
  
  # prepare data for plotting time courses
  # returns dt with these columns:
dmattek's avatar
dmattek committed
526
  #    realtime - selected from input
dmattek's avatar
dmattek committed
527
  #    y        - measurement selected from input
dmattek's avatar
dmattek committed
528
  #               (can be a single column or result of an operation on two cols)
529
530
  #    id       - trackObjectsLabelUni; created in dataMod based on TrackObjects_Label
  #               and FOV column such as Series or Site (if TrackObjects_Label not unique across entire dataset)
dmattek's avatar
dmattek committed
531
532
  #    group    - grouping variable for facetting from input
  #    mid.in   - column with trajectory selection status from the input file or
533
534
535
536
  #               highlight status from UI 
  #               (column created if mid.in present in uploaded data or tracks are selected in the UI)
  #    obj.num  - created if ObjectNumber column present in the input data 
  #    pos.x,y  - created if columns with x and y positions present in the input data
537
  data4trajPlot <- reactive({
dmattek's avatar
dmattek committed
538
    cat(file = stderr(), 'data4trajPlot\n')
539
540
    
    loc.dt = dataMod()
dmattek's avatar
dmattek committed
541
    if (is.null(loc.dt))
542
543
      return(NULL)
    
544
    # create expression for 'y' column based on measurements and math operations selected in UI
dmattek's avatar
dmattek committed
545
    if (input$inSelMath == '')
546
547
548
549
550
551
      loc.s.y = input$inSelMeas1
    else if (input$inSelMath == '1 / ')
      loc.s.y = paste0(input$inSelMath, input$inSelMeas1)
    else
      loc.s.y = paste0(input$inSelMeas1, input$inSelMath, input$inSelMeas2)
    
552
    # create expression for 'group' column
553
554
    # creates a merged column based on other columns from input
    # used for grouping of plot facets
dmattek's avatar
dmattek committed
555
556
557
558
559
560
561
562
563
564
565
    if (input$chBgroup) {
      if(length(input$inSelGroup) == 0)
        return(NULL)
      
      loc.s.gr = sprintf("paste(%s, sep=';')",
                         paste(input$inSelGroup, sep = '', collapse = ','))
    } else {
      # if no grouping required, fill 'group' column with 0
      # because all the plotting relies on the presence of the group column
      loc.s.gr = "paste('0')"
    }
566
    
dmattek's avatar
dmattek committed
567
568

    # column name with time
569
570
    loc.s.rt = input$inSelTime
    
dmattek's avatar
dmattek committed
571
572
    # Assign tracks selected for highlighting in UI
    loc.tracks.highlight = input$inSelHighlight
573
    locButHighlight = input$chBhighlightTraj
dmattek's avatar
dmattek committed
574
    
dmattek's avatar
Added:    
dmattek committed
575
576
    
    # Find column names with position
577
    loc.s.pos.x = names(loc.dt)[grep('(L|l)ocation.*X|(P|p)os.x|(P|p)osx', names(loc.dt))[1]]
578
    loc.s.pos.y = names(loc.dt)[grep('(L|l)ocation.*Y|(P|p)os.y|(P|p)osy', names(loc.dt))[1]]
dmattek's avatar
Added:    
dmattek committed
579
    
580
    cat('Position columns: ', loc.s.pos.x, loc.s.pos.y, '\n')
581
582
    
    if (!is.na(loc.s.pos.x) & !is.na(loc.s.pos.y))
dmattek's avatar
Added:    
dmattek committed
583
584
585
586
      locPos = TRUE
    else
      locPos = FALSE
    
587
588
589
590
    
    # Find column names with ObjectNumber
    # This is different from TrackObject_Label and is handy to keep
    # because labels on segmented images are typically ObjectNumber
591
592
593
594
595
596
    loc.s.objnum = names(loc.dt)[grep('(O|o)bject(N|n)umber', names(loc.dt))[1]]
    #cat('data4trajPlot::loc.s.objnum ', loc.s.objnum, '\n')
    if (is.na(loc.s.objnum)) {
      locObjNum = FALSE
    }
    else {
dmattek's avatar
dmattek committed
597
      loc.s.objnum = loc.s.objnum[1]
598
      locObjNum = TRUE
dmattek's avatar
dmattek committed
599
    }
600
601
    
    
602
603
    # if dataset contains column mid.in with trajectory filtering status,
    # then, include it in plotting
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    if (sum(names(loc.dt) %in% 'mid.in') > 0)
      locMidIn = TRUE
    else
      locMidIn = FALSE
    
    ## Build expression for selecting columns from loc.dt
    # Core columns
    s.colexpr = paste0('.(y = ', loc.s.y,
                       ', id = trackObjectsLabelUni', 
                       ', group = ', loc.s.gr,
                       ', realtime = ', loc.s.rt)
    
    # account for the presence of 'mid.in' column in uploaded data
    if(locMidIn)
      s.colexpr = paste0(s.colexpr, 
                         ', mid.in = mid.in')
    
    # include position x,y columns in uploaded data
    if(locPos)
      s.colexpr = paste0(s.colexpr, 
                         ', pos.x = ', loc.s.pos.x,
                         ', pos.y = ', loc.s.pos.y)
    
    # include ObjectNumber column
    if(locObjNum)
      s.colexpr = paste0(s.colexpr, 
                         ', obj.num = ', loc.s.objnum)
    
    # close bracket, finish the expression
    s.colexpr = paste0(s.colexpr, ')')
    
    # create final dt for output based on columns selected above
    loc.out = loc.dt[, eval(parse(text = s.colexpr))]
    
    
    # if track selection ON
    if (locButHighlight){
      # add a 3rd level with status of track selection
      # to a column with trajectory filtering status in the uploaded file
      if(locMidIn)
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', mid.in)]
      else
dmattek's avatar
Mod:    
dmattek committed
646
        # add a column with status of track selection
647
        loc.out[, mid.in := ifelse(id %in% loc.tracks.highlight, 'SELECTED', 'NOT SEL')]
648
    }
649
      
dmattek's avatar
dmattek committed
650

651
    ## Interpolate missing data and NA data points
652
    # From: https://stackoverflow.com/questions/28073752/r-how-to-add-rows-for-missing-values-for-unique-group-sequences
653
654
655
    # Tracks are interpolated only within first and last time points of every cell id
    # Datasets can have different realtime frequency (e.g. every 1', 2', etc),
    # or the frame number metadata can be missing, as is the case for tCourseSelected files that already have realtime column.
656
    # Therefore, we cannot rely on that info to get time frequency; user provides this number!
657
    
658
659
    setkey(loc.out, group, id, realtime)

660
661
    if (input$chBtrajInter) {
      # here we fill missing data with NA's
662
      loc.out = loc.out[setkey(loc.out[, .(seq(min(realtime, na.rm = T), max(realtime, na.rm = T), input$inSelTimeFreq)), by = .(group, id)], group, id, V1)]
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
      
      # x-check: print all rows with NA's
      print('Rows with NAs:')
      print(loc.out[rowSums(is.na(loc.out)) > 0, ])
      
      # NA's may be already present in the dataset'.
      # Interpolate (linear) them with na.interpolate as well
      if(locPos)
        s.cols = c('y', 'pos.x', 'pos.y')
      else
        s.cols = c('y')
      
      loc.out[, (s.cols) := lapply(.SD, na.interpolation), by = id, .SDcols = s.cols]
      
      
      # !!! Current issue with interpolation:
      # The column mid.in is not taken into account.
      # If a trajectory is selected in the UI,
      # the mid.in column is added (if it doesn't already exist in the dataset),
      # and for the interpolated point, it will still be NA. Not really an issue.
      #
      # Also, think about the current option of having mid.in column in the uploaded dataset.
      # Keep it? Expand it?
      # Create a UI filed for selecting the column with mid.in data.
      # What to do with that column during interpolation (see above)
      
    }    
dmattek's avatar
Mod:    
dmattek committed
690
    
691
    ## Trim x-axis (time)
dmattek's avatar
dmattek committed
692
693
694
    if(input$chBtimeTrim) {
      loc.out = loc.out[realtime >= input$slTimeTrim[[1]] & realtime <= input$slTimeTrim[[2]] ]
    }
dmattek's avatar
dmattek committed
695
    
696
    ## Normalization
697
    # F-n tca::normTraj adds additional column with .norm suffix
dmattek's avatar
dmattek committed
698
    if (input$chBnorm) {
699
      loc.out = tca::normTraj(
dmattek's avatar
dmattek committed
700
701
702
703
704
705
706
707
708
709
        in.dt = loc.out,
        in.meas.col = 'y',
        in.rt.col = 'realtime',
        in.rt.min = input$slNormRtMinMax[1],
        in.rt.max = input$slNormRtMinMax[2],
        in.type = input$rBnormMeth,
        in.robust = input$chBnormRobust,
        in.by.cols = if(input$chBnormGroup %in% 'none') NULL else input$chBnormGroup
      )
      
dmattek's avatar
dmattek committed
710
711
      # Column with normalized data is renamed to the original name
      # Further code assumes column name y produced by data4trajPlot
dmattek's avatar
dmattek committed
712
713
714
715
      loc.out[, y := NULL]
      setnames(loc.out, 'y.norm', 'y')
    }
    
dmattek's avatar
dmattek committed
716
717
718
719
720
721
    ##### MOD HERE
    ## display number of filtered tracks in textUI: uiTxtOutliers
    ## How? 
    ## 1. through reactive values?
    ## 2. through additional comumn to tag outliers?
    
dmattek's avatar
dmattek committed
722
723
724
725
726
727
728
729
730
731
    # Remove outliers
    # 1. Scale all points (independently per track)
    # 2. Pick time points that exceed the bounds
    # 3. Identify IDs of outliers
    # 4. Select cells that don't have these IDs
    
    cat('Ncells orig = ', length(unique(loc.out$id)), '\n')
    
    if (input$chBoutliers) {
      loc.out[, y.sc := scale(y)]  
732
733
      loc.tmp = loc.out[ y.sc < quantile(y.sc, (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T) | 
                           y.sc > quantile(y.sc, 1 - (1 - input$slOutliersPerc * 0.01)*0.5, na.rm = T)]
dmattek's avatar
dmattek committed
734
735
736
737
738
      loc.out = loc.out[!(id %in% unique(loc.tmp$id))]
      loc.out[, y.sc := NULL]
    }
    
    cat('Ncells trim = ', length(unique(loc.out$id)), '\n')
dmattek's avatar
Mod:    
dmattek committed
739
    
dmattek's avatar
dmattek committed
740
    return(loc.out)
dmattek's avatar
dmattek committed
741
742
  })
  
dmattek's avatar
dmattek committed
743
744
745
746
747
748
749
750
751
752
753
754
755
  
  
  # prepare data for clustering
  # return a matrix with:
  # cells as columns
  # time points as rows
  data4clust <- reactive({
    cat(file = stderr(), 'data4clust\n')
    
    loc.dt = data4trajPlot()
    if (is.null(loc.dt))
      return(NULL)
    
dmattek's avatar
Added:    
dmattek committed
756
    #print(loc.dt)
dmattek's avatar
dmattek committed
757
    loc.out = dcast(loc.dt, id ~ realtime, value.var = 'y')
dmattek's avatar
Added:    
dmattek committed
758
    #print(loc.out)
dmattek's avatar
dmattek committed
759
760
    loc.rownames = loc.out$id
    
dmattek's avatar
Mod:    
dmattek committed
761
    
dmattek's avatar
dmattek committed
762
763
    loc.out = as.matrix(loc.out[, -1])
    rownames(loc.out) = loc.rownames
dmattek's avatar
Added:    
dmattek committed
764
    
765
766
    # This might be removed entirely because all NA treatment happens in data4trajPlot
    # Clustering should work with NAs present. These might result from data itself or from missing time point rows that were turned into NAs when dcast-ing from long format.
dmattek's avatar
Added:    
dmattek committed
767
768
769
770
    # Remove NA's
    # na.interpolation from package imputeTS works with multidimensional data
    # but imputation is performed for each column independently
    # The matrix for clustering contains time series in rows, hence transposing it twice
771
    # loc.out = t(na.interpolation(t(loc.out)))
dmattek's avatar
Added:    
dmattek committed
772
    
dmattek's avatar
dmattek committed
773
    return(loc.out)
dmattek's avatar
Mod:    
dmattek committed
774
  }) 
dmattek's avatar
dmattek committed
775
  
dmattek's avatar
dmattek committed
776
  
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
  # prepare data with stimulation pattern
  # this dataset is displayed underneath of trajectory plot (modules/trajPlot.R) as geom_segment
  data4stimPlot <- reactive({
    cat(file = stderr(), 'data4stimPlot\n')
    
    if (input$chBstim) {
      cat(file = stderr(), 'data4stimPlot: stim not NULL\n')
      
      loc.dt.stim = dataLoadStim()
      return(loc.dt.stim)
    } else {
      cat(file = stderr(), 'data4stimPlot: stim is NULL\n')
      return(NULL)
    }
  })
  
dmattek's avatar
Added:    
dmattek committed
793
794
795
796
797
798
799
800
801
  # download data as prepared for plotting
  # after all modification
  output$downloadDataClean <- downloadHandler(
    filename = 'tCoursesSelected_clean.csv',
    content = function(file) {
      write.csv(data4trajPlot(), file, row.names = FALSE)
    }
  )
  
802
803
  ###### Trajectory plotting
  callModule(modTrajRibbonPlot, 'modTrajRibbon', 
804
             in.data = data4trajPlot,
805
             in.data.stim = data4stimPlot,
806
             in.fname = function() return( "tCoursesMeans.pdf"))
dmattek's avatar
dmattek committed
807
  
808
  ###### Trajectory plotting
809
810
  callModule(modTrajPlot, 'modTrajPlot', 
             in.data = data4trajPlot, 
811
             in.data.stim = data4stimPlot,
812
             in.fname = function() {return( "tCourses.pdf")})
813
814
815
  
  ## UI for selecting trajectories
  # The output data table of data4trajPlot is modified based on inSelHighlight field
dmattek's avatar
dmattek committed
816
817
  output$varSelHighlight = renderUI({
    cat(file = stderr(), 'UI varSelHighlight\n')
dmattek's avatar
dmattek committed
818
    
dmattek's avatar
dmattek committed
819
820
821
    locBut = input$chBhighlightTraj
    if (!locBut)
      return(NULL)
dmattek's avatar
dmattek committed
822
    
dmattek's avatar
dmattek committed
823
    loc.v = getDataTrackObjLabUni()
dmattek's avatar
dmattek committed
824
    if (!is.null(loc.v)) {
825
      selectInput(
dmattek's avatar
dmattek committed
826
827
828
        'inSelHighlight',
        'Select one or more rajectories:',
        loc.v,
829
        width = '100%',
dmattek's avatar
dmattek committed
830
        multiple = TRUE
831
      )
dmattek's avatar
dmattek committed
832
833
834
    }
  })
  
835
  ###### AUC calculation and plotting
836
  callModule(modAUCplot, 'tabAUC', data4trajPlot, in.fname = function() return('boxplotAUC.pdf'))
dmattek's avatar
Added:    
dmattek committed
837
  
dmattek's avatar
Added:    
dmattek committed
838
  ###### Box-plot
839
  callModule(tabBoxPlot, 'tabBoxPlot', data4trajPlot, in.fname = function() return('boxplotTP.pdf'))
dmattek's avatar
dmattek committed
840
  
dmattek's avatar
dmattek committed
841
  ###### Scatter plot
842
  callModule(tabScatterPlot, 'tabScatter', data4trajPlot, in.fname = function() return('scatter.pdf'))
dmattek's avatar
dmattek committed
843
  
dmattek's avatar
dmattek committed
844
  ##### Hierarchical clustering
845
  callModule(clustHier, 'tabClHier', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
846
847
  
  ##### Sparse hierarchical clustering using sparcl
848
  callModule(clustHierSpar, 'tabClHierSpar', data4clust, data4trajPlot, data4stimPlot)
dmattek's avatar
dmattek committed
849

dmattek's avatar
Mod:    
dmattek committed
850
  
dmattek's avatar
dmattek committed
851
})