Upgrade to new Gitlab Version 13.9 on Saturday 19th April 20:00. Expect an interruption of about 30 to 60 minutes

auxfunc.R 19.1 KB
Newer Older
dmattek's avatar
dmattek committed
1
## Custom plotting
dmattek's avatar
dmattek committed
2
require(ggplot2)
dmattek's avatar
Mod:  
dmattek committed
3 4 5
require(RColorBrewer)
require(gplots) # for heatmap.2
require(grid) # for modifying grob
dmattek's avatar
dmattek committed
6

dmattek's avatar
dmattek committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
rhg_cols <- c(
  "#771C19",
  "#AA3929",
  "#E25033",
  "#F27314",
  "#F8A31B",
  "#E2C59F",
  "#B6C5CC",
  "#8E9CA3",
  "#556670",
  "#000000"
)

md_cols <- c(
  "#FFFFFF",
  "#F8A31B",
  "#F27314",
  "#E25033",
  "#AA3929",
  "#FFFFCC",
  "#C2E699",
  "#78C679",
  "#238443"
)

dmattek's avatar
dmattek committed
32 33 34 35 36 37 38 39 40 41 42 43 44
s.cl.linkage = c("ward.D",
                 "ward.D2",
                 "single",
                 "complete",
                 "average",
                 "mcquitty",
                 "centroid")

s.cl.spar.linkage = c("average",
                      "complete", 
                      "single",
                      "centroid")

dmattek's avatar
Added:  
dmattek committed
45
s.cl.diss = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "DTW")
dmattek's avatar
dmattek committed
46 47
s.cl.spar.diss = c("squared.distance","absolute.value")

48
# list of palettes for the heatmap
dmattek's avatar
dmattek committed
49 50 51 52 53 54 55 56 57 58
l.col.pal = list(
  "White-Orange-Red" = 'OrRd',
  "Yellow-Orange-Red" = 'YlOrRd',
  "Reds" = "Reds",
  "Oranges" = "Oranges",
  "Greens" = "Greens",
  "Blues" = "Blues",
  "Spectral" = 'Spectral'
)

59 60 61 62 63 64 65 66 67 68
# list of palettes for the dendrogram
l.col.pal.dend = list(
  "Rainbow" = 'rainbow_hcl',
  "Sequential" = 'sequential_hcl',
  "Heat" = 'heat_hcl',
  "Terrain" = 'terrain_hcl',
  "Diverge HCL" = 'diverge_hcl',
  "Diverge HSV" = 'diverge_hsv'
)

dmattek's avatar
Added:  
dmattek committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
# Creates a popup with help text
# From: https://gist.github.com/jcheng5/5913297
helpPopup <- function(title, content,
                      placement=c('right', 'top', 'left', 'bottom'),
                      trigger=c('click', 'hover', 'focus', 'manual')) {
  tagList(
    singleton(
      tags$head(
        tags$script("$(function() { $(\"[data-toggle='popover']\").popover(); })")
      )
    ),
    tags$a(
      href = "#", class = "btn btn-mini", `data-toggle` = "popover",
      title = title, `data-content` = content, `data-animation` = TRUE,
      `data-placement` = match.arg(placement, several.ok=TRUE)[1],
      `data-trigger` = match.arg(trigger, several.ok=TRUE)[1],
      #tags$i(class="icon-question-sign")
      # changed based on http://stackoverflow.com/questions/30436013/info-bubble-text-in-a-shiny-interface
      icon("question")
    )
  )
}

help.text = c(
  'Accepts CSV file with a column of cell IDs for removal. 
                   IDs should correspond to those used for plotting. 
  Say, the main data file contains columns Metadata_Site and TrackLabel. 
  These two columns should be then selected in UI to form a unique cell ID, e.g. 001_0001 where former part corresponds to Metadata_Site and the latter to TrackLabel.',
  'Plotting and data processing requires a unique cell ID across entire dataset. A typical dataset from CellProfiler assigns unique cell ID (TrackLabel) within each field of view (Metadata_Site).
98 99
                   Therefore, a unique ID is created by concatenating these two columns. If the dataset already contains a unique ID, UNcheck this box and select a single column only.',
  'This option allows to interpolate NAs or missing data. Some rows in the input file might be missing because a particular time point might not had been acquired. 
100 101
  This option, interpolates such missing points as well as points with NAs in the measurement column. When this option is checked, the interval of time column must be provided!',
  'Accepts CSV file with two columns: grouping, time points of stimulation.'
dmattek's avatar
Added:  
dmattek committed
102 103 104 105
)


#####
dmattek's avatar
dmattek committed
106
## Functions for clustering 
dmattek's avatar
Added:  
dmattek committed
107

dmattek's avatar
dmattek committed
108 109 110 111 112 113 114 115 116

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works wth dist & hclust pair
# For sparse hierarchical clustering use getDataClSpar
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut

getDataCl = function(in.dend, in.k) {
dmattek's avatar
Added:  
dmattek committed
117 118
  cat(file = stderr(), 'getDataCl \n')
  
dmattek's avatar
dmattek committed
119 120 121 122 123 124 125 126
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = names(loc.m),
                         cl = loc.m)
  
127 128
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
129
  return(loc.dt.cl)
dmattek's avatar
Added:  
dmattek committed
130 131
}

dmattek's avatar
dmattek committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

# Return a dt with cell IDs and corresponding cluster assignments depending on dendrogram cut (in.k)
# This one works with sparse hierarchical clustering!
# Arguments:
# in.dend  - dendrogram; usually output from as.dendrogram(hclust(distance_matrix))
# in.k - level at which dendrogram should be cut
# in.id - vector of cell id's

getDataClSpar = function(in.dend, in.k, in.id) {
  cat(file = stderr(), 'getDataClSpar \n')
  
  loc.m = dendextend::cutree(in.dend, in.k, order_clusters_as_data = TRUE)
  #print(loc.m)
  
  # The result of cutree containes named vector with names being cell id's
  # THIS WON'T WORK with sparse hierarchical clustering because there, the dendrogram doesn't have original id's
  loc.dt.cl = data.table(id = in.id,
                         cl = loc.m)
  
151 152
  #cat('===============\ndataCl:\n')
  #print(loc.dt.cl)
dmattek's avatar
dmattek committed
153 154 155 156 157
  return(loc.dt.cl)
}



dmattek's avatar
Added:  
dmattek committed
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
# prepares a table with cluster numbers in 1st column and colour assignments in 2nd column
# the number of rows is determined by dendrogram cut
getClCol <- function(in.dend, in.k) {
  
  loc.col_labels <- get_leaves_branches_col(in.dend)
  loc.col_labels <- loc.col_labels[order(order.dendrogram(in.dend))]
  
  return(unique(
    data.table(cl.no = dendextend::cutree(in.dend, k = in.k, order_clusters_as_data = TRUE),
               cl.col = loc.col_labels)))
}


#####
## Common plotting functions
dmattek's avatar
dmattek committed
173

dmattek's avatar
dmattek committed
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
# Build Function to Return Element Text Object
# From: https://stackoverflow.com/a/36979201/1898713
rotatedAxisElementText = function(angle, position='x', size = 12){
  angle     = angle[1]; 
  position  = position[1]
  positions = list(x=0, y=90, top=180, right=270)
  if(!position %in% names(positions))
    stop(sprintf("'position' must be one of [%s]",paste(names(positions),collapse=", ")), call.=FALSE)
  if(!is.numeric(angle))
    stop("'angle' must be numeric",call.=FALSE)
  rads = (-angle - positions[[ position ]])*pi/180
  hjust = round((1 - sin(rads)))/2
  vjust = round((1 + cos(rads)))/2
  element_text(size = 12, angle = angle, vjust = vjust, hjust = hjust)
}

190
# default ggplot theme used in the app
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
myGgplotTheme = 
  theme_bw(base_size = 8, base_family = "Helvetica") +
  theme(
    panel.spacing = unit(1, "lines"),
    panel.grid.minor = element_blank(),
    panel.grid.major = element_blank(),
    panel.border = element_blank(),
    axis.line.x = element_line(color = "black", size = 0.25),
    axis.line.y = element_line(color = "black", size = 0.25),
    axis.text = element_text(size = 8),
    axis.title = element_text(size = 8),
    strip.text = element_text(size = 10, face = "bold"),
    strip.background = element_blank(),
    legend.key = element_blank(), 
    legend.text = element_text(size = 8),
    legend.key.height = unit(1, "lines"),
    legend.key.width = unit(2, "lines"),
    legend.position = "top"
  )

211 212 213

# Plot individual time series
LOCplotTraj = function(dt.arg, # input data table
dmattek's avatar
Mod:  
dmattek committed
214 215 216 217 218 219 220 221 222 223 224
                        x.arg,  # string with column name for x-axis
                        y.arg, # string with column name for y-axis
                        group.arg, # string with column name for grouping time series (typicaly cell ID)
                        facet.arg, # string with column name for facetting
                        facet.ncol.arg = 2, # default number of facet columns
                        facet.color.arg = NULL, # vector with list of colours for adding colours to facet names (currently a horizontal line on top of the facet is drawn)
                        line.col.arg = NULL, # string with column name for colouring time series (typically when individual time series are selected in UI)
                        xlab.arg = NULL, # string with x-axis label
                        ylab.arg = NULL, # string with y-axis label
                        plotlab.arg = NULL, # string with plot label
                        dt.stim.arg = NULL, # plotting additional dataset; typically to indicate stimulations (not fully implemented yet, not tested!)
225 226
                        x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                        y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
dmattek's avatar
dmattek committed
227
                        tfreq.arg = 1,
dmattek's avatar
dmattek committed
228
                        ylim.arg = NULL,
dmattek's avatar
Added:  
dmattek committed
229
                        stim.bar.width.arg = 0.5,
dmattek's avatar
Mod:  
dmattek committed
230
                        aux.label1 = NULL, # 1st point label; used for interactive plotting; displayed in the tooltip; typically used to display values of column holding x & y coordinates
dmattek's avatar
Added:  
dmattek committed
231
                        aux.label2 = NULL,
232
                        aux.label3 = NULL,
dmattek's avatar
Added:  
dmattek committed
233 234 235 236 237
                        stat.arg = c('', 'mean', 'CI', 'SE')) {
  
  # match arguments for stat plotting
  loc.stat = match.arg(stat.arg, several.ok = TRUE)

dmattek's avatar
Added:  
dmattek committed
238 239
  
  # aux.label12 are required for plotting XY positions in the tooltip of the interactive (plotly) graph
dmattek's avatar
dmattek committed
240 241
  p.tmp = ggplot(dt.arg,
                 aes_string(x = x.arg,
dmattek's avatar
dmattek committed
242
                            y = y.arg,
dmattek's avatar
Added:  
dmattek committed
243
                            group = group.arg,
244 245 246 247 248
                            label = group.arg))
  #,
  #                          label  = aux.label1,
  #                          label2 = aux.label2,
  #                          label3 = aux.label3))
dmattek's avatar
dmattek committed
249
  
dmattek's avatar
dmattek committed
250 251 252 253 254 255 256 257 258 259 260 261 262
  if (is.null(line.col.arg)) {
    p.tmp = p.tmp +
      geom_line(alpha = 0.25, 
                              size = 0.25)
  }
  else {
    p.tmp = p.tmp + 
      geom_line(aes_string(colour = line.col.arg), 
                              alpha = 0.5, 
                              size = 0.5) +
      scale_color_manual(name = '', 
                         values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green', "NOT SEL" = rhg_cols[7]))
  }
dmattek's avatar
Mod:  
dmattek committed
263 264 265 266 267 268 269 270 271 272

  # this is temporary solution for adding colour according to cluster number
  # use only when plotting traj from clustering!
  # a horizontal line is added at the top of data
  if (!is.null(facet.color.arg)) {

    loc.y.max = max(dt.arg[, c(y.arg), with = FALSE])
    loc.dt.cl = data.table(xx = 1:length(facet.color.arg), yy = loc.y.max)
    setnames(loc.dt.cl, 'xx', facet.arg)
    
dmattek's avatar
Fixed:  
dmattek committed
273 274
    # adjust facet.color.arg to plot
    
dmattek's avatar
Mod:  
dmattek committed
275 276 277 278 279
    p.tmp = p.tmp +
      geom_hline(data = loc.dt.cl, colour = facet.color.arg, yintercept = loc.y.max, size = 4) +
      scale_colour_manual(values = facet.color.arg,
                          name = '')
  }
dmattek's avatar
dmattek committed
280
  
dmattek's avatar
Added:  
dmattek committed
281 282
  if ('mean' %in% loc.stat)
    p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
283 284 285
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.y = mean,
dmattek's avatar
Added:  
dmattek committed
286
      colour = 'red',
dmattek's avatar
dmattek committed
287 288 289 290
      linetype = 'solid',
      size = 1,
      geom = "line",
      group = 1
dmattek's avatar
Added:  
dmattek committed
291 292 293 294 295 296 297 298
    )

  if ('CI' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_cl_normal,
      colour = 'red',
dmattek's avatar
Mod:  
dmattek committed
299
      alpha = 0.25,
dmattek's avatar
Added:  
dmattek committed
300 301 302 303 304 305 306 307 308 309
      geom = "ribbon",
      group = 1
    )
  
  if ('SE' %in% loc.stat)
    p.tmp = p.tmp + 
    stat_summary(
      aes_string(y = y.arg, group = 1),
      fun.data = mean_se,
      colour = 'red',
dmattek's avatar
Mod:  
dmattek committed
310
      alpha = 0.25,
dmattek's avatar
Added:  
dmattek committed
311 312 313 314 315 316 317
      geom = "ribbon",
      group = 1
    )
  
  
  
  p.tmp = p.tmp + 
dmattek's avatar
dmattek committed
318 319 320
    facet_wrap(as.formula(paste("~", facet.arg)),
               ncol = facet.ncol.arg,
               scales = "free_x")
321 322 323 324

  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
dmattek's avatar
dmattek committed
325 326
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
327 328 329 330 331
                                 aes_string(x = x.stim.arg[1],
                                            xend = x.stim.arg[2],
                                            y = y.stim.arg[1],
                                            yend = y.stim.arg[2],
                                            group = 'group'),
dmattek's avatar
dmattek committed
332
                                 colour = rhg_cols[[3]],
333
                                 size = stim.bar.width.arg) 
dmattek's avatar
dmattek committed
334 335
  }
  
dmattek's avatar
dmattek committed
336 337 338
  if (!is.null(ylim.arg)) 
    p.tmp = p.tmp + coord_cartesian(ylim = ylim.arg)
  
dmattek's avatar
dmattek committed
339 340 341 342
  p.tmp = p.tmp + 
    xlab(paste0(xlab.arg, "\n")) +
    ylab(paste0("\n", ylab.arg)) +
    ggtitle(plotlab.arg) +
343
    ggplotTheme() + 
344
    theme(legend.position = "top")
dmattek's avatar
dmattek committed
345
  
dmattek's avatar
Mod:  
dmattek committed
346
  return(p.tmp)
dmattek's avatar
dmattek committed
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
# Plot average time series with CI together in one facet
LOCplotTrajRibbon = function(dt.arg, # input data table
                          x.arg, # string with column name for x-axis
                          y.arg, # string with column name for y-axis
                          group.arg = NULL, # string with column name for grouping time series (here, it's a column corresponding to grouping by condition)
                          col.arg = NULL, # colour pallette for individual time series
                          dt.stim.arg = NULL, # data table with stimulation pattern
                          x.stim.arg = c('tstart', 'tend'), # column names in stimulation dt with x and xend parameters
                          y.stim.arg = c('ystart', 'yend'), # column names in stimulation dt with y and yend parameters
                          stim.bar.width.arg = 0.5,
                          ribbon.lohi.arg = c('Lower', 'Upper'),
                          ribbon.fill.arg = 'grey50',
                          ribbon.alpha.arg = 0.5,
                          xlab.arg = NULL,
                          ylab.arg = NULL,
                          plotlab.arg = NULL) {
  
  p.tmp = ggplot(dt.arg, aes_string(x = x.arg, group = group.arg)) +
    geom_ribbon(aes_string(ymin = ribbon.lohi.arg[1], ymax = ribbon.lohi.arg[2]),
                fill = ribbon.fill.arg,
                alpha = ribbon.alpha.arg) +
    geom_line(aes_string(y = y.arg, colour = group.arg))
  
dmattek's avatar
dmattek committed
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  # plot stimulation bars underneath time series
  # dt.stim.arg is read separately and should contain 4 columns with
  # xy positions of beginning and end of the bar
  if(!is.null(dt.stim.arg)) {
    p.tmp = p.tmp + geom_segment(data = dt.stim.arg,
                                 aes_string(x = x.stim.arg[1],
                                     xend = x.stim.arg[2],
                                     y = y.stim.arg[1],
                                     yend = y.stim.arg[2]),
                                 colour = rhg_cols[[3]],
                                 size = stim.bar.width.arg,
                                 group = 1) 
  }

  
  if (is.null(col.arg)) {
    p.tmp = p.tmp +
      scale_color_discrete(name = '')
  } else {
    p.tmp = p.tmp +
      scale_colour_manual(values = col.arg, name = '')
  }
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp + ggtitle(plotlab.arg)
  
  p.tmp = p.tmp +
    xlab(xlab.arg) +
    ylab(ylab.arg)
  
  return(p.tmp)
404 405 406
}


407

dmattek's avatar
dmattek committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
# Plots a scatter plot with marginal histograms
# Points are connected by a line (grouping by cellID)
#
# Assumes an input of data.table with
# x, y - columns with x and y coordinates
# id - a unique point identifier (here corresponds to cellID)
# mid - a (0,1) column by which points are coloured (here corresponds to whether cells are within bounds)

myGgplotScat = function(dt.arg,
                        band.arg = NULL,
                        facet.arg = NULL,
                        facet.ncol.arg = 2,
                        xlab.arg = NULL,
                        ylab.arg = NULL,
                        plotlab.arg = NULL,
                        alpha.arg = 1,
                        group.col.arg = NULL) {
  p.tmp = ggplot(dt.arg, aes(x = x, y = y))
  
  if (is.null(group.col.arg)) {
    p.tmp = p.tmp +
      geom_point(alpha = alpha.arg, aes(group = id))
  } else {
    p.tmp = p.tmp +
      geom_point(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      geom_path(aes(colour = as.factor(get(group.col.arg)), group = id), alpha = alpha.arg) +
      scale_color_manual(name = group.col.arg, values =c("FALSE" = rhg_cols[7], "TRUE" = rhg_cols[3], "SELECTED" = 'green'))
  }
  
  if (is.null(band.arg))
    p.tmp = p.tmp +
      stat_smooth(
dmattek's avatar
dmattek committed
440 441 442
        # method = function(formula, data, weights = weight)
        #   rlm(formula, data, weights = weight, method = 'MM'),
        method = "lm",
dmattek's avatar
dmattek committed
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        fullrange = FALSE,
        level = 0.95,
        colour = 'blue'
      )
  else {
    p.tmp = p.tmp +
      geom_abline(slope = band.arg$a, intercept = band.arg$b) +
      geom_abline(
        slope = band.arg$a,
        intercept =  band.arg$b + abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      ) +
      geom_abline(
        slope = band.arg$a,
        intercept = band.arg$b - abs(band.arg$b)*band.arg$width,
        linetype = 'dashed'
      )
  }
  
  if (!is.null(facet.arg)) {
    p.tmp = p.tmp +
      facet_wrap(as.formula(paste("~", facet.arg)),
                 ncol = facet.ncol.arg)
    
  }
  
  
  if (!is.null(xlab.arg))
    p.tmp = p.tmp +
      xlab(paste0(xlab.arg, "\n"))
  
  if (!is.null(ylab.arg))
    p.tmp = p.tmp +
      ylab(paste0("\n", ylab.arg))
  
  if (!is.null(plotlab.arg))
    p.tmp = p.tmp +
      ggtitle(paste0(plotlab.arg, "\n"))
  
  
  
  p.tmp = p.tmp +
485
    ggplotTheme() +
486 487
    theme(legend.position = "none")

dmattek's avatar
dmattek committed
488 489 490 491 492 493
  # Marginal distributions don;t work with plotly...
  # if (is.null(facet.arg))
  #   ggExtra::ggMarginal(p.scat, type = "histogram",  bins = 100)
  # else
  return(p.tmp)
}
dmattek's avatar
dmattek committed
494

495

dmattek's avatar
Mod:  
dmattek committed
496 497 498 499 500 501 502 503 504 505 506 507 508
myPlotHeatmap <- function(data.arg,
                          dend.arg,
                          palette.arg,
                          palette.rev.arg = TRUE,
                          dend.show.arg = TRUE,
                          key.show.arg = TRUE,
                          margin.x.arg = 5,
                          margin.y.arg = 20,
                          nacol.arg = 0.5,
                          colCol.arg = NULL,
                          labCol.arg = NULL,
                          font.row.arg = 1,
                          font.col.arg = 1,
509
                          breaks.arg = NULL,
dmattek's avatar
Mod:  
dmattek committed
510 511
                          title.arg = 'Clustering') {
  
512 513
  loc.n.colbreaks = 99
  
dmattek's avatar
Mod:  
dmattek committed
514 515
  if (palette.rev.arg)
    my_palette <-
516
    rev(colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks))
dmattek's avatar
Mod:  
dmattek committed
517 518
  else
    my_palette <-
519
    colorRampPalette(brewer.pal(9, palette.arg))(n = loc.n.colbreaks)
dmattek's avatar
Mod:  
dmattek committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
  
  
  col_labels <- get_leaves_branches_col(dend.arg)
  col_labels <- col_labels[order(order.dendrogram(dend.arg))]
  
  if (dend.show.arg) {
    assign("var.tmp.1", dend.arg)
    var.tmp.2 = "row"
  } else {
    assign("var.tmp.1", FALSE)
    var.tmp.2 = "none"
  }
  
  loc.p = heatmap.2(
    data.arg,
    Colv = "NA",
    Rowv = var.tmp.1,
    srtCol = 90,
    dendrogram = var.tmp.2,
    trace = "none",
    key = key.show.arg,
    margins = c(margin.x.arg, margin.y.arg),
    col = my_palette,
    na.col = grey(nacol.arg),
    denscol = "black",
    density.info = "density",
    RowSideColors = col_labels,
    colRow = col_labels,
    colCol = colCol.arg,
    labCol = labCol.arg,
    #      sepcolor = grey(input$inPlotHierGridColor),
    #      colsep = 1:ncol(loc.dm),
    #      rowsep = 1:nrow(loc.dm),
    cexRow = font.row.arg,
    cexCol = font.col.arg,
dmattek's avatar
dmattek committed
555 556
    main = title.arg,
    symbreaks = FALSE,
557 558
    symkey = FALSE,
    breaks = if (is.null(breaks.arg)) NULL else seq(breaks.arg[1], breaks.arg[2], length.out = loc.n.colbreaks+1)
dmattek's avatar
Mod:  
dmattek committed
559 560 561 562
  )
  
  return(loc.p)
}