Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Jerome Pasquier
Delayed puberty
Commits
c46a885b
Commit
c46a885b
authored
Dec 23, 2021
by
Jerome Pasquier
Browse files
updates longitudinal analyses, 2021-12-23
parent
8c259da8
Changes
1
Hide whitespace changes
Inline
Side-by-side
R/longitudinal_analyses.R
View file @
c46a885b
library
(
broom.mixed
)
library
(
dplyr
)
library
(
ggeffects
)
library
(
ggplot2
)
library
(
ggpubr
)
library
(
lme4
)
...
...
@@ -12,19 +13,30 @@ library(writexl)
options
(
mc.cores
=
detectCores
()
-
1
)
# Define subset
# k = 1 -> All observation
# k = 2 -> Inculude only observations until 16.5y
k
<-
2
# Set working directory
setwd
(
"~/Projects/Consultations/Pitteloud Nelly (Puberté)"
)
# Output directory
outdir
<-
paste0
(
"results/longitudinal_analyses_"
,
format
(
Sys.Date
(),
"%Y%m%d"
))
if
(
!
dir.exists
(
outdir
))
dir.create
(
outdir
)
outdir
<-
file.path
(
outdir
,
c
(
"all_observations"
,
"until_16.5y"
)[
k
])
if
(
!
dir.exists
(
outdir
))
dir.create
(
outdir
,
recursive
=
TRUE
)
# Load data
dta
<-
read_xlsx
(
"data-raw/Evolution-november_AI_updated.xlsx"
,
na
=
c
(
""
,
"NA"
,
"-"
))
names
(
dta
)
<-
trimws
(
gsub
(
"\\(.+\\)|\\r\\n"
,
""
,
names
(
dta
)))
# Subset
if
(
k
==
2
)
{
dta
<-
dta
[
dta
$
Age
<=
16.5
,
]
}
# Add DX
dx
<-
unique
(
na.omit
(
dta
[
c
(
"ID"
,
"DX"
)]))
dx
$
DX
<-
factor
(
sub
(
", Kallmann"
,
""
,
dx
$
DX
),
...
...
@@ -40,54 +52,91 @@ Y <- c("TV", "T", "LH", "FSH", "AMH", "INB")
R
<-
mclapply
(
setNames
(
Y
,
Y
),
function
(
y
)
{
sdta
<-
dta
%>%
select
(
ID
,
DX
,
Age
,
one_of
(
y
))
%>%
drop_na
()
%>%
mutate
(
AgeC14
=
Age
-
14
)
fml
<-
as.formula
(
paste
(
y
,
"~ DX * AgeC14 + (1 | ID)"
))
drop_na
()
fml
<-
as.formula
(
paste
(
y
,
"~ DX * Age + (1 | ID)"
))
ctrl
<-
lmerControl
(
optimizer
=
"Nelder_Mead"
)
fit
<-
do.call
(
"lmer"
,
list
(
formula
=
fml
,
data
=
quote
(
sdta
),
control
=
quote
(
ctrl
)))
tbl
<-
tidy
(
fit
,
conf.int
=
TRUE
)
%>%
bind_rows
(
do.call
(
rbind
,
lapply
(
c
(
"Partial CHH"
,
"Complete CHH"
),
function
(
u
)
{
mutate
(
sdta
,
DX
=
relevel
(
DX
,
u
))
%>%
lmer
(
fml
,
data
=
.
,
control
=
ctrl
)
%>%
tidy
(
conf.int
=
TRUE
)
%>%
filter
(
term
==
"AgeC14"
)
%>%
mutate
(
term
=
paste0
(
term
,
" ("
,
u
,
")"
))
}))
)
%>%
select
(
term
,
estimate
,
std.error
,
conf.low
,
conf.high
,
p.value
)
%>%
mutate
(
term
=
sub
(
"sd__"
,
"SD "
,
sub
(
":"
,
" x "
,
sub
(
"^DX"
,
""
,
term
))))
DX_list
<-
c
(
"CDGP"
,
"Partial CHH"
,
"Complete CHH"
)
DX_list
<-
setNames
(
DX_list
,
sub
(
" "
,
"_"
,
DX_list
))
ref_ages
<-
c
(
0
,
seq
(
14
,
c
(
20
,
16.5
)[
k
],
.5
))
%>%
setNames
(
.
,
.
)
fits
<-
lapply
(
ref_ages
,
function
(
a
)
{
lapply
(
DX_list
,
function
(
dx
)
{
sdta
<-
sdta
%>%
mutate
(
DX
=
relevel
(
DX
,
dx
),
Age
=
Age
-
a
)
fit
<-
do.call
(
"lmer"
,
list
(
formula
=
fml
,
data
=
quote
(
sdta
),
control
=
quote
(
ctrl
)))
tbl
<-
tidy
(
fit
,
conf.int
=
TRUE
)
%>%
select
(
term
,
estimate
,
std.error
,
conf.low
,
conf.high
,
p.value
)
%>%
mutate
(
term
=
sub
(
"^DX"
,
""
,
term
),
term
=
sub
(
":"
,
" x "
,
term
),
term
=
sub
(
"sd__"
,
"SD "
,
term
),
)
if
(
a
!=
0
)
{
tbl
<-
tbl
%>%
mutate
(
term
=
sub
(
"Age"
,
paste0
(
"AgeC"
,
a
),
term
))
}
names
(
tbl
)[
1
]
<-
paste0
(
"term (ref: "
,
dx
,
")"
)
list
(
fit
=
fit
,
tbl
=
tbl
)
})
})
tbls
<-
lapply
(
fits
,
function
(
z
)
lapply
(
z
,
function
(
w
)
w
$
tbl
))
fits
<-
lapply
(
fits
,
function
(
z
)
lapply
(
z
,
function
(
w
)
w
$
fit
))
figs
<-
list
()
dgp
<-
plot_model
(
fit
,
type
=
"diag"
)
dgp
<-
plot_model
(
fit
s
[[
1
]][[
1
]]
,
type
=
"diag"
)
dgp
[[
2
]]
<-
dgp
[[
2
]]
$
ID
figs
$
diag
<-
ggarrange
(
plotlist
=
dgp
,
nrow
=
2
,
ncol
=
2
)
%>%
annotate_figure
(
top
=
text_grob
(
"Diagnostic plots"
,
face
=
"bold"
,
size
=
16
))
%>%
suppressMessages
()
figs
$
pred1
<-
augment
(
fit
)
%>%
figs
$
pred1
<-
augment
(
fit
s
[[
1
]][[
1
]]
)
%>%
group_by
(
ID
)
%>%
filter
(
n
()
>
1
)
%>%
mutate
(
Age
=
AgeC14
+
14
)
%>%
ggplot
(
aes
(
Age
,
!!
sym
(
y
)))
+
geom_point
()
+
geom_line
(
aes
(
y
=
.fitted
,
colour
=
DX
))
+
facet_wrap
(
~
ID
)
+
labs
(
title
=
"Individual predictions"
)
+
theme
(
legend.position
=
"bottom"
,
legend.title
=
element_blank
())
ndta
<-
expand.grid
(
AgeC14
=
range
(
sdta
$
AgeC14
),
DX
=
levels
(
sdta
$
DX
))
ndta
[[
y
]]
<-
predict
(
fit
,
re.form
=
NA
,
newdata
=
ndta
)
figs
$
pred2
<-
ggplot
(
ndta
,
aes
(
x
=
AgeC14
+
14
,
y
=
!!
sym
(
y
),
colour
=
DX
))
+
geom_line
()
+
labs
(
title
=
"Fixed effects predictions"
,
x
=
"Age"
)
+
ndta
<-
do.call
(
rbind
,
lapply
(
names
(
fits
[[
1
]]),
function
(
dx
)
{
ggpredict
(
fits
[[
1
]][[
dx
]],
"Age"
)
%>%
as_tibble
()
%>%
select
(
x
,
predicted
,
conf.low
,
conf.high
)
%>%
mutate
(
dx
=
dx
)
}))
%>%
mutate
(
dx
=
factor
(
dx
,
names
(
fits
[[
1
]])))
figs
$
pred2
<-
ggplot
(
ndta
,
aes
(
x
=
x
,
y
=
predicted
))
+
geom_line
(
aes
(
colour
=
dx
))
+
geom_ribbon
(
aes
(
ymin
=
conf.low
,
ymax
=
conf.high
,
fill
=
dx
),
alpha
=
0.3
,
show.legend
=
FALSE
)
+
labs
(
x
=
"Age"
,
y
=
y
,
title
=
"Fixed effects predictions"
)
+
theme
(
legend.position
=
"bottom"
,
legend.title
=
element_blank
())
list
(
fit
=
fit
,
tbl
=
tbl
,
figs
=
figs
)
list
(
fit
s
=
fit
s
,
tbl
s
=
tbl
s
,
figs
=
figs
)
})
if
(
any
(
sapply
(
R
,
function
(
r
)
isSingular
(
r
$
fit
))))
warning
(
"Singular fit"
)
# Export results
write_xlsx
(
lapply
(
R
,
function
(
r
)
r
$
tbl
),
file.path
(
outdir
,
"regression_coefficients.xlsx"
))
# Any singular fit ?
b
<-
lapply
(
R
,
function
(
r
)
lapply
(
r
$
fits
,
function
(
z
)
lapply
(
z
,
isSingular
)))
if
(
any
(
unlist
(
b
)))
warning
(
"Singular fit"
)
rm
(
b
)
# Export results - Tables
Z
<-
lapply
(
R
,
function
(
r
)
lapply
(
r
$
tbls
,
function
(
z
)
{
tbl
<-
lapply
(
z
,
cbind
,
NA
)
%>%
append
(
list
(
.name_repair
=
"minimal"
))
%>%
do.call
(
bind_cols
,
.
)
names
(
tbl
)[
names
(
tbl
)
==
"NA"
]
<-
""
return
(
tbl
)
}))
for
(
y
in
names
(
Z
))
{
f
<-
paste
(
y
,
"regression_coefficients.xlsx"
,
sep
=
"_"
)
f
<-
file.path
(
outdir
,
f
)
write_xlsx
(
Z
[[
y
]],
f
)
}
rm
(
Z
,
f
,
y
)
# Export results - Figures
for
(
y
in
names
(
R
))
{
tiff
(
filename
=
file.path
(
outdir
,
paste0
(
y
,
"_diagnostic_plots.tiff"
)),
height
=
3600
,
width
=
5400
,
res
=
384
,
compression
=
"zip"
)
...
...
@@ -103,6 +152,9 @@ for (y in names(R)) {
print
(
R
[[
y
]]
$
figs
$
pred2
)
dev.off
()
}
rm
(
y
)
# Session Info
sink
(
file.path
(
outdir
,
"sessionInfo.txt"
))
print
(
sessionInfo
(),
locale
=
FALSE
)
sink
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment